DOI QR코드

DOI QR Code

곤충병원세균(Xenorhabdus nematophila) 유래물질의 톱다리개미허리노린재(Riptortus clavatus) 장내세균 증식억제 및 살충효과

Antibiotic and Insecticidal Activities of Metabolites Derived From an Entomopathogenic Bacterium, Xenorhabdus nematophila, Against The Bean Bug, Riptortus clavatus

  • 서삼열 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Seo, Sam-Yeol (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yong-Gyun (Department of Bioresource Sciences, Andong National University)
  • 투고 : 2010.08.17
  • 심사 : 2010.09.06
  • 발행 : 2010.09.30

초록

톱다리개미허리노린재(Riptortus clavatus)의 장내세균이 분리되었다. 형태학적 분석과 생화학적 분석을 통하여 세균이 Staphylococcus succinus와 가장 유사한 것으로 동정되었다. 16S rRNA 유전자의 염기서열은 이러한 동정 결과를 뒷받침했다. 페니실린G를 톱다리개미허리노린재 성충에게 경구투여 하였을 때 장내세균 밀도 감소와 치사 효과를 유발하였다. 동일한 방법으로 곤충병원세균(Xenorhabdus nematophila)의 세 가지 대사물질(benzylideneacetone, proline-tyrosine, and acetylated phenylalanine-glycine-valine)을 처리하였을 때, 톱다리개미허리노린재 장내세균의 밀도감소와 치사효과를 확인하였다. 이러한 결과는 톱다리개미허리노린재의 장내세균이 Staphylococcus sp.이며, 곤충병원세균 대사물질의 항균 활성이 장내세균과 궁극적으로 톱다리개미허리노린재의 생존에 영향을 미친다는 것을 제시하였다.

A bacterial colony was isolated from the gut of the bean bug, Riptortus clavatus. From morphological and biochemical tests, the bacterial isolate showed the highest similarity to Staphylococcus succinus. DNA sequence of 16S rRNA gene of the bacterium supported the identification. Oral administration of penicillin G to adults of R. clavatus gave a dose-dependent mortality of adults of R. clavatus to adults along with significant decrease of the bacterial population in the gut. Similarly, three metabolites (benzylideneacetone, proline-tyrosine, and acetylated phenylalanine-glycine-valine) derived from an entomopathogenic bacterium, Xenorhabdus nematophila, also inhibited growth of the gut bacterial population and gave significant mortalities to R. clavatus. These results suggest that a gut bacterial population classified as Staphylococcus sp. is required for survival of R. clavatus and that the three bacterial metabolites had toxic effects on the bugs due to their antibacterial properties.

키워드

참고문헌

  1. Adams, B.J. and K.B. Nguyen. 2002. Taxonomy and systematics. pp. 1-33. In Entomopathogenic nematology, ed. by R. Gaugler. CABI Publishing, New York.
  2. Akhurst, R J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309.
  3. Bae, S.D., H.J. Kim, J.K. Park, J.K. Jung and H.J. Cho. 2004. Effects of food combinations of leguminous seeds on nymphal development, adult longevity and oviposition of bean bug, Riptortus clavatus Thunberg. Kor. J. Appl. Entomol. 43: 123-127.
  4. Bae, S.D., H.J. Kim, C.G. Park, G.H. Lee, S.T. Park and Y.H. Song. 2005a. Reproductive rate of one-banded stink bug, Piezodorus hybneri Linnaeus (Hemiptera: Pentatomidae) in various rearing cages. Kor. J. Appl. Entomol. 44: 293-298.
  5. Bae, S.D., H.J. Kim, C.G. Park, G.H. Lee and S.T. Park. 2005b. The development and oviposition of bean bug, Riptortus clavatus Thunberg (Hemiptera: Alydidae) at temperature condi tions. Kor. J. Appl. Entomol. 44: 325-330.
  6. Bae, S.D., H.J. Kim, G.H. Lee and S.T. Park. 2008. Development of observation methods for density of stink bugs in soybean field. Kor. J. Appl. Entomol. 46: 153-158. https://doi.org/10.5656/KSAE.2007.46.1.153
  7. Chung, B.K., S.W. Kang and J.H. Kwon. 1995. Damages, occurrences and coutrol of hemipterousinsects in non-astringent persimmon orchards. RDA. J. Agri. Sci. 37: 376-382.
  8. Dunphy, G.B. and J.M. Webster. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by Serum of nonimmune larvae of Galleria mellonella. J. lnvertebr. Pathol. 58: 40-51. https://doi.org/10.1016/0022-2011(91)90160-R
  9. Dunphy, G.B. and J.M. Webster. 1994. Interaction of Xenorhabdus nematophila subsp. nematophilus with the haemolymph of Galleria mellonella. J. Insect Physiol. 30: 883-889.
  10. Eutick, M.L., R.W. O'Brien and M. Slaytor. 1978. Bacteria from the gut of Australian termites. Appl. Environ. Microbiol. 35: 823-828.
  11. fftench-Constant, R.H., N. Waterfield and P. Daborn. 2005. Insecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill. Elsevier, New York.
  12. Forst, S. B. Dedos, N. Boemare and E. Stackebrandt. 1997. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51: 47-72. https://doi.org/10.1146/annurev.micro.51.1.47
  13. Ha, K.S. 2004. Damages of hemipterous insects on major cultivated soybean cultivars in Gangwon province. Kor. Soyb. Digest 21: 1-5.
  14. Hu, H.S., W. Huh, S.D. Bae and C.G. Park. 2005. Seasonal occurrence and ovarian development of bean bug, Riptortus clavatus. Kor. J. Appl. Entomol. 44: 199-205.
  15. Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
  16. Kanost, M.R., H. Jiang and X. Yu. 2004. Innate immune responses of a lepidopteran insects, Manduca sexta. Immunol. Rev. 198: 97-105. https://doi.org/10.1111/j.0105-2896.2004.0121.x
  17. Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  18. Kwon, S. and Y. Kim. 2008. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 101: 36-41. https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
  19. Lee, K.C., C.H. Kang, D.W. Lee, S.M. Lee, C.G. Park and H.Y. Choo. 2002. Seasonal occurrence trends of hemipteran bug pests monitored by mercury light and aggregation pheromone traps in sweet persimmon orchards. Kor. J. Appl. Entomol. 41: 233-238.
  20. Li, J., G. Chen, H. Wu and J.M. Webster. 1995. Identification of two pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Appl. Environ. Microbiol. 61: 4329-4333.
  21. Park, Y., and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476.
  22. Park, Y., M. Kim, G. Lee, W. Chun, Y. Lee and Y. Kim. 2009. Inhibitory effects of an eicosanoid biosynthesis inhibitor, benzylideneacetone, against two spotted spider mite, Tetranychus urticae, and a bacterial wilt-causing pathogen, Ralstona solanacearum. Kor. J. Appl. Entomol. 13: 185-189.
  23. Sambrook, J., E.F. Fritsch and T. Maniatis. 1989. Molecular nd cloning. A laboratory manual. 2nd ed. Cold Spring Harbour Society. 164 pp. St. Paul, MN, USA.
  24. SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
  25. Shrestha, S. and Y. Kim 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
  26. Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune-associated phospholipase $A_{2}$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782. https://doi.org/10.1007/s12275-009-0145-3
  27. Son, C.K., S.G. Park, Y.H. Hwang and B.S. Choi. 2000. Field occurrence of stink bug and its damage in soybean. Kor. J. Crop Sci. 45: 405-410.
  28. Stanley, D.W. and J.S. Miller. 2006. Eicosanoid actions in insect cellular immune functions. Entomol. Exp. Appl. 119: 1-13. https://doi.org/10.1111/j.1570-7458.2006.00406.x
  29. Stanley, D. 2006. Prostaglandins and other eicosanoids in insects: biological significance. Aunu. Rev. Entomol. 51: 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021
  30. Kikuchi, Y., T. Hosokawa and T. Fukatsu. 2007. Insect-microbe mutualism without a vertical transmission: a stinkbug acquires a beneficial gut symbiont from the envrronment every generation. Appl. Environ. Microbiol. 73: 4308-4316. https://doi.org/10.1128/AEM.00067-07
  31. Kikuchi, Y., X.Y. Meng and T. Fukatsu. 2005. Gut symbiotic bacteria of the genus Burkholderia in the broad-headed bugs Riptortus clavatus and Leptocorisa shinensis (Heteroptera: Alydidae). Appl. Environ. Microbiol. 71: 4035-4043. https://doi.org/10.1128/AEM.71.7.4035-4043.2005
  32. Valiente Moro, C., J. Thioulouse, C. Chauve, P. Normand and L. Zenner. 2009. Bacterial taxa associated with the hematophagous mite Dermanyssus gallinae detected by 16S rRNA PCR amplification and TTGE fingerprinting. Res. Microbiol. 160: 63-70. https://doi.org/10.1016/j.resmic.2008.10.006
  33. van der Hoeven, R., G. Betrabet and S. Forst. 2008. Characterization of the gut bacterial community in Manduca sexta and effect of antibiotics on bacterial diversity and nematode reproduction. FEMS Microbiol. Lett. 286: 249-256. https://doi.org/10.1111/j.1574-6968.2008.01277.x