References
- Adams, B.J. and K.B. Nguyen. 2002. Taxonomy and systematics. pp. 1-33. In Entomopathogenic nematology, ed. by R. Gaugler. CABI Publishing, New York.
- Akhurst, R.J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309.
- Broderick, N.A., K.F. Raffa and J. Handelsman. 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103: 15196-15199. https://doi.org/10.1073/pnas.0604865103
- Corpping, L.G. and J.J. Menn. 2000. Biopesticides: a review of their action, application and efficacy. Pest Manage. Sci. 56: 651-676. https://doi.org/10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U
- Corpping, L.G. 2004. The manual of biocontrol agents. BCPC, Hampshire, UK.
- Dionne, M.S., L.N. Pham, M. Shirasu-Hiza and D.S. Schneider. 2006. Akt and FOXO dysregulation contribute to infection induced wasting in Drosophila. Curr. Biol. 16: 1977-1985. https://doi.org/10.1016/j.cub.2006.08.052
- Dunphy, G.B. and J.M. Webster. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. lnvertebr. Pathol. 58: 40-51. https://doi.org/10.1016/0022-2011(91)90160-R
- Dunphy, G.B. and J.M. Webster. 1994. Interaction of Xenorhabdus nematophila subsp. nematophilus with the haemolymph of Galleria mellonella. J. lnsect Physiol. 30: 883-889.
- Ferre J. and J. Van Rie. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47: 501-533. https://doi.org/10.1146/annurev.ento.47.091201.145234
- ffrench-Constant, R.H., N. Waterfield and P. Dabom. 2005. lnsecticidal toxins from Photorhabdus and Xenorhabdus. pp. 239-253, In Comprehensive molecular insect science, eds. by L.I. Gilbert, I. Kostas and S.S. Gill. Elsevier, New York.
- Forcada, C., E. Alcacer, M.D. Garcera, A. Tato and R. Martinez. 1999. Resistance to Baciilus thuringiensis Cry Ac toxin in three strains of Heliothis virescent proteolytic and SIM study of the larval midgut. Arch. lnsect Bitchen. Physiol. 42: 51-63. https://doi.org/10.1002/(SICI)1520-6327(199909)42:1<51::AID-ARCH6>3.0.CO;2-6
- Forst, S. B. Dedos, N. Boemare and E. Stackebrandt. 1997. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51: 47-72. https://doi.org/10.1146/annurev.micro.51.1.47
- Gahan, L.J., F. Gould and D.G. Heckel. 2001. Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293: 857-86l. https://doi.org/10.1126/science.1060949
- Gassmann, A.J., J.A. Fabrick, M.S. Sisterson, E.R. Hannon, S.P. Stock, Y. Carriere and B.E. Tabashnik. 2009. Effects of pink bollworm resistance to Bacillus thuringiensis on phenoloxidase activity and susceptibility to entomopathogenic nematodes. J. Econ. Entomol. 102: 1224-1232. https://doi.org/10.1603/029.102.0348
- Gill, S.S., E.A. Cowles and P.V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151
- Gillespie, J.P., M.R. Kanost and T. Trenczek. 1997. Biological mediators of insect immunity. Annu Rev. Entomol. 42: 611-643. https://doi.org/10.1146/annurev.ento.42.1.611
- Harrison, D.A., R. Binari, T.S. Nahreini, M. Gilman and N. Perrimon. 1995. Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14: 2857-2865.
- Hoffman, C., H. Vanderbruggen, H. Hofte, J. Van Rie, S. Jansens and H. Van Mellaert. 1988. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-7848. https://doi.org/10.1073/pnas.85.21.7844
- Jacot, A., H. Scheuber, J. Kurtz and M.W. Brinkhof. 2005. Juvenile immune system activation induces a costly upregulation of adult immunity in field crickets, Gryllus campestris. Proc. Biol. Sci. 272: 63-69. https://doi.org/10.1098/rspb.2004.2919
- Jenkins, J.I. and D.H. Dean. 2000. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. pp. 33-54. In Genetic engineering: principles and methods, vol. 22. eds. by K. Setlow. Plenum, New York.
- Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248. https://doi.org/10.1016/j.femsle.2004.08.041
- Kang, S., S. Han and Y. Kim. 2004. Identification of an entomopathogenic bacterium, Photorhabdus temperata subsp. temperata, in Korea. J. Asia Pac. Entomol. 7: 331-337. https://doi.org/10.1016/S1226-8615(08)60235-6
- Kaya, H.K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
- Kim, H.H., Y.S. Seo, J.H. Lee and K.Y. Cho. 1990. Development of fenvalerate resistance in the diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) and its cross resistance. Kor. J. Appl. Entomol. 29: 194-200.
- Kim, J. 2009. Research trend in biopesticide development. www. bioin. co.kr.
-
Kim, Y., D. Ji, S. Cho and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdusk, share an inhibitory action against Phospholipase
$A_{2}$ to induce host innunodepression. J. Invertebr. Pathol. 89: 258-264. https://doi.org/10.1016/j.jip.2005.05.001 - Kwon, S. and Y. Kim. 2007. Immunosuppressive action of pyriproxyfen, a juvenile hormone analog, enhances pathogenicity of Bacillus thuringiensis subsp. kurstaki against diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Biol. Control. 42: 72-76. https://doi.org/10.1016/j.biocontrol.2007.03.006
- Kwon, S. and Y. Kim. 2008. Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 101: 36-41. https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
- Luo, H., W.P. Hanratty and C.R. Dearolf. 1995. An amino acid substitution in the Drosophila hopTum-l Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 14: 1412-1420.
- Oppert, B., K.J. Krammer, R. W. Beeman, D. Johnson and W.H. McGaughey. 1997. Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J. Biol. Chem. 272: 23473-23476. https://doi.org/10.1074/jbc.272.38.23473
- Park, N.J., S.C. Oh, Y.H. Choi, K.R. Choi and K.Y. Cho. 2004. lnheritance and cross resistance of phenthoate-selected diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). J. Asia Pac. Entomol. 7: 233-237. https://doi.org/10.1016/S1226-8615(08)60221-6
- Park, Y., Y. Yi and Y. Kim. 1999. Identification and characterization of a symbiotic bacterium associated with Steinernema carpocapsae in Korea. J. Asia Pac. Entomol. 2: 105-111. https://doi.org/10.1016/S1226-8615(08)60038-2
- Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46: 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
- Pham, L.N. and D.S. Schneider. 2008. Evidence for specificity and memory in the insect innate immune response. pp. 97-127.In Insect Immunology, ed. by N.E. Beckage. 348 pp. Academic Press. New York.
- Pigott, C. and D.J. Ellar. 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 71: 255-281. https://doi.org/10.1128/MMBR.00034-06
- Qiu, P., P. Pan and S. Govind. 1998. A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125: 1909-1920.
- Rahman, M.M, H.L.S. Roberts, M. Sarjan, S. Asgari and O. Schmidt. 2004. Induction and transmission of Bacillus thuringiensis tolerance in the flour moth. Ephestia kuehniella. Proc. Natl. Acad. Sci. USA 101: 2696-2699. https://doi.org/10.1073/pnas.0306669101
- SAS Institute, Inc. 1989. SAS/STAT user's guide, Release 6.03, Ed. Cary, N.C.
- Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigler and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. J. Microbiol. Mol. Biol. Rev. 62: 775-806.
- Seo, S. and Y. Kim. 2009. Two entomopathogenic bacteria, Xenorhabdus nematophila K1 and Photorhabdus temperata subsp. temperata ANU101 secrete factors enhancing Bt pathogenicity against the diamondback moth, Plutella xylostella. Kor. J. Appl. Entomol. 38: 385-392. https://doi.org/10.5656/KSAE.2009.48.3.385
- Shrestha, S. and Y. Kim. 2008. Eicosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Biol. 38: 99-112. https://doi.org/10.1016/j.ibmb.2007.09.013
-
Shrestha, S. and Y. Kim. 2009. Biochemical characteristics of immune-associated phospholipase
$A_{2}$ and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47: 774-782. https://doi.org/10.1007/s12275-009-0145-3 - Silva, C.P., N.R. Waterfield, P.J. Daborn, P. Dean, T. Chilver, C.P. Au, S. Sharma, U. Potter, S.E. Reynolds and R.H. ffrench-Constant. 2002. Bacterial infection of a model insect: Photorhabdus luminescens and Manduca sexta. Cell. Microbiol. 6: 329-339.
- Tabashnik, B.E., R.T. Roush, E.D. Earle and A.M. Shelton. 2000. Resistance to Bt toxins. Science 287: 42.
- Tabashnik, B.E., G.C. Unnithan., L. Masson., D.W. Crowder., X. Li and Y. Carriere. 2009. Asymmetrical cross-resistance between Bacillus thuringiensis toxins Cry1Ac and Cry2Ab in pink bollworm. Proc. Natl. Acad. Sci. USA 29: 11889-11894
- Talekar, N.S. and A.M. Shelton. 1993. Biology, ecology, and management of the diamondback moth. Annu. Rev. Entomol. 38: 275-301. https://doi.org/10.1146/annurev.en.38.010193.001423
- Tanada, Y. and Kaya, H.K. 1993. Insect pathology, Academic Press, San Diego.
- Wang, P., J-Z. Zhao, A. Rodrico-Simon, W. Kain, A.F Janmaat, A.M. Shelton, J. Ferre and J.H. Myers. 2007. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Appl. Environ. Microbiol. 73: 1199-1207. https://doi.org/10.1128/AEM.01834-06
- Zhang, X., M. Candas, N. B. Griko, L. Rose-Young and L. A. Bulla Jr. 2005. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor Bt-R1 expressed in insect cells. Cell Death Differ 12: 1407-1416. https://doi.org/10.1038/sj.cdd.4401675
- Zhang, X., N.B. Griko, S.K. Corona and L.A. Bulla, Jr. 2008. Enhanced exocytosis of the receptor BT-R(I) induced by the Cry1Ab toxin of Bacillus thuringiensis directly correlates to the execution of cell death. Comp. Biochem. Physiol. B. 149: 581-588. https://doi.org/10.1016/j.cbpb.2007.12.006
Cited by
- Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media vol.49, pp.4, 2010, https://doi.org/10.5656/KSAE.2010.49.4.409
- Toxicity Evaluation of 'Bt-Plus' on Parasitoid and Predatory Natural Enemies vol.51, pp.1, 2012, https://doi.org/10.5656/KSAE.2012.01.0.001
- Enhancement of Bt-Plus Toxicity by Unidentified Biological Response Modifiers Derived from the Bacterial Culture Broth of Xenornabdus nematiphila vol.54, pp.2, 2015, https://doi.org/10.5656/KSAE.2015.03.1.073
- Effect of Solubility of Thiamine Dilauryl Sulfate Solution through the Manufacture of the Nano Paticles on Antifungal Activity vol.19, pp.6, 2011, https://doi.org/10.7783/KJMCS.2011.19.6.464
- Structure-activity Analysis of Benzylideneacetone for Effective Control of Plant Pests vol.50, pp.2, 2011, https://doi.org/10.5656/KSAE.2011.04.0.15
- Effect of Cellular Phospholipase A2Inhibition on Enhancement of Bt Insecticidal Activity vol.53, pp.3, 2014, https://doi.org/10.5656/KSAE.2014.08.0.027
- Enhanced Pathogenicity of Bacillus thuringiensis Mixed with a Culture Broth of an Entomopathogenic Bacterium, Xenorhabdus sp. vol.51, pp.1, 2012, https://doi.org/10.5656/KSAE.2011.12.0.076
- Inhibitors Synthesized by Two Entomopathogenic Bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata vol.78, pp.11, 2012, https://doi.org/10.1128/AEM.00301-12