DOI QR코드

DOI QR Code

북방수염하늘소(Monochamus saltuarius), 솔수염하늘소(Monochamus alternatus), 털두꺼비하늘소(Moechotypa diphysis) 성충의 표피탄화수소 비교

Comparison of Cuticular Hydrocarbons of the Pine Sawyer (Monochamus saltuarius), Japanese Pine Sawyer (Monochamus alternatus) and Oak Longicorn Beetle (Moechotypa diphysis)

  • 이정은 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김은희 (충북대학교 농업생명환경대학 식물의학과) ;
  • 윤창만 (충북대학교 농업생명환경대학 식물의학과) ;
  • 김길하 (충북대학교 농업생명환경대학 식물의학과)
  • Lee, Jeong-Eun (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University) ;
  • Kim, Eun-Hee (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University) ;
  • Yoon, Chang-Mann (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University) ;
  • Kim, Gil-Hah (Dept. of Plant Medicine, Coll. of Agri. Life and Environ. Sci., Chungbuk National University)
  • 투고 : 2010.07.20
  • 심사 : 2010.07.09
  • 발행 : 2010.09.30

초록

북방수염하늘소, 솔수염하늘소, 털두꺼비하늘소 성충 암·수의 표피탄화수소를 GC와 GC-MS로 분석하고 비교하였다. 북방수염하늘소와 솔수염하늘소는 소나무재선충병의 대표적 매개충이지만 같은 과에 속한 털두꺼비하늘소는 그렇지 않다. 이들은 표피탄화수소 사슬을 다르게 가지고 있는데, 북방수염하늘소의 표피탄화수소 사슬은 $C_{23-35}$, 솔수염하늘소는 $C_{25-32}$, 그리고 털두꺼비하늘소는 $C_{23-29}$로 종간 차이를 보였다. 주 구성성분의 암 수간 차이에서 함량에 대한 차이는 있었지만, 조성에 대한 차이는 없었다. 북방수염하늘소는 n-pentacosane > n-nonacosane > n-heptacosane, 솔수염하늘소는 n-nonacosene > n-pentacosane > n-nonacosane을 가장 많이 포함하고 있었으며, 털두꺼비하늘소는 n-heptacosane > 13-methylheptacosane > 3-methylheptacosane을 가장 많이 포함하고 있는데 반해 n-nonacosene, n-pentacosane의 함량은 적었다. 3종하늘소 표피의 대부분은 n-alkane인 포화탄화수소로 이루어져 있고(40.2 - 65.7%) 그 다음으로, 북방수염하늘소와 솔수염하늘소는 하나 또는 두 개의 이중결합을 갖는 olefins > monomethylalkanes 순이었다. 이와 달리, 털두꺼비하늘소는 monomethylalkanes > olefins 순으로 함량에 차이가 있었다.

Cuticular hydrocarbons (CHCs) of the pine sawyer (Monochamus saltuarius), Japanese pine sawyer (M. alternatus) and oak longicorn beetle (Moechotypa diphysis) were analyzed by GC, GC-MS and compared. Monochamus beetles are typical vectors of pine wilt disease but Moechotypa diphysis, which belongs to the same family, is not. They possess different CHCs in carbon number: 23-25 in M. saltuarius, 25-32 in M. alternatus, and 23-29 in M. diphysis. In comparison to inter-species, these three species of adult beetles have different numbers and chains of constituents of CHCs. In comparison between male and female in intra-species, the quantities of CHCs show the difference but constituents are not. Major constituent of M. saltuarius were analyzed as n-pentacosane > n-nonacosane > n-heptacosane; those of M. alternatus were n-nonacosene > n-pentacosane > n-nonacosane; and those of M. diphysis were n-heptacosane > 13-methylheptacosane > 3-methylheptacosane. From the body surface, most saturated carbohydrates of 3 species beetles are composed of n-alkane (40.2 - 65.7%) and followed by olefines > monomethylalkanes that one or two double bonds in M. saltuarius and M. alternatus. Otherwise, M. diphysis have the difference in order of monomethylalkanes > olefins.

키워드

참고문헌

  1. Akino, T, 2006. Cuticular hydrocarbons of Formica truncorum (Hymenoptera: Formicidae): Description of new very long chained hydrocarbon components. Appl. Entomol. Zool. 41: 667-677. https://doi.org/10.1303/aez.2006.667
  2. Barbour, J.D., E.S. Lacey and L.M. Hanks. 2007. Cuticular hydrocarbons mediate mate recognition in a species of longhorned beetle (Coleoptera: Cerambycidae) of the primitive subfamily prioninae. Ann. Entomol. Soc. Am. 100: 333-338. https://doi.org/10.1603/0013-8746(2007)100[333:CHMMRI]2.0.CO;2
  3. Bernier, U.R., D.A. Carlson and C.J. Geden. 1998. Gas chromatography/mass spectrometry analysis of the cuticular hydrocarbons from parasitic wasps of the genus Musicidifurax. J. Am. Soc. Mass Spectrom. 9: 320-332. https://doi.org/10.1016/S1044-0305(97)00288-2
  4. Blomquist, G.J., D.R. Nelson and M. de Renobales. 1987. Chemistry, biochemistry and physiology of insect cuticular lipids. Arch. Insect Biochem. Physiol. 6: 227-265. https://doi.org/10.1002/arch.940060404
  5. Boroczky, K., K.C. Park, R.D. Minard, T.H. Jones, T.C. Baker and J.H. Tumlinson. 2008. Differences in cuticular lipid composition of the antennae of Helicoverpa zea, Heliothis virescens and Manduca sexta. J. Insect Physiol. 54: 1385-1391. https://doi.org/10.1016/j.jinsphys.2008.07.010
  6. Brown, W.V., H.A. Rose and M.J. Lacey. 1997. The cuticular hydrocarbons of the soil burrowing cockroach Geoscapheus dilatatus (Saussure) (Blattodea: Blaberidae: Geoscapheinae) indicate species dimorphism. Comp. Biochem. Physiol. 118B: 549-562.
  7. Brown, W.V., H.A. Rose, M.J. Lacey and D. Wright. 2000. The cuticular hydrocarons of the giant soil-burrowing cockroach Macropanesthia rhinoceros Saussure (Blattodea: Blaberidae: Geoscapheinae): analysis with respect to age, sex and location Comp. Biochem. Physiol. 127B: 261-277.
  8. Buckley, S.H., T. Tregenza and R.K. Butlin. 1997. Speciation and signal trait genetics. Trends Ecol. Evol. 12: 299-301. https://doi.org/10.1016/S0169-5347(97)01126-9
  9. Carlson, D.A. and R.J. Brenner. 1988. Hydrocarbon-based discrimination of three North American Blattella cockroach species (Orthoptera: Blattellidae) using gas chromatography. Ann. Entomol. Soc. Am. 81: 711-723. https://doi.org/10.1093/aesa/81.5.711
  10. Cobb, M. and J.M. Jallon. 1990. Pheromones, mate recognition and courtship stimulation in the Drosophila melanogaster species sub-group. Anim. Behav. 39: 1058-1067. https://doi.org/10.1016/S0003-3472(05)80778-X
  11. Coyne, J.A., A.P. Crittenden and K. Mah. 1994. Genetics of a pheromone difference contributing to reproductive isolation in Drosophila. Science 265: 1461-1464. https://doi.org/10.1126/science.8073292
  12. Coyne, J.A. and B. Charlesworth. 1997. Genetics of a pheromonal difference affecting sexual isolation between Drosophila mauritiana and D. sechellia. Evolution 145: 1015-1030.
  13. Dani, F.R., G.R. Jones, S. Destri, S.H. Spencer and S. Turillazzi. 2001. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim. Behav. 62: 165-171. https://doi.org/10.1006/anbe.2001.1714
  14. Everaerts, C., J-P. Farine, M. Cobb, and J-F. Ferveur. 2010. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS ONE 5: e9607. doi: 10.1371/journal. pone.0009607.
  15. Fan, Y., D. Eliyahu and C. Schal. 2008. Curicular hydrocarbons as maternal provisions in embryos and nymphs of the cockroach provisions in embryos and nymphs of the cockroach Blattella germanica. J. Exp. Biol. 211: 548-554. https://doi.org/10.1242/jeb.009233
  16. Gamboa, G.J., T.A. Grudzien, K.E. Espelie and E.A. Bura. 1996. Kin recognition pheromones in social wasps: combining chemical and behavioural evidence. Anim. Behav. 51 : 625-629. https://doi.org/10.1006/anbe.1996.0067
  17. Gamboa, G.J. 2004. Kin recognition in eusocial wasps. Ann. Zool. Fennici 41 : 789-808.
  18. Ginzel, M.D., G.J. Blomquist, J.G. Millar and L.M. Hanks. 2003. Role of contact pheromones in mate recognition in Xylotrechus colonus. J. Chem. Ecol. 29: 533-545. https://doi.org/10.1023/A:1022894419521
  19. Howard, R.W. 1993. Cuticular hydrocarbons and chemical communication. pp. 179-226. In Insect lipids: chemistry, biochemistry and biology, eds. by D.W. Stanley-Samuelson and D.R. Nelson, University of Nebraska Press, Lincoln, Nebraska
  20. Jurenka, R.A. and M. Subchev. 2000. Identification of cuticular hydrocarbons and the alkene precursor to the pheromone in hemolymph of the female gypsy moth, Lymantria dispar. Arch. Insect Biochem. Physiol. 43: 108-115. https://doi.org/10.1002/(SICI)1520-6327(200003)43:3<108::AID-ARCH2>3.0.CO;2-V
  21. Kaib, M., P. Jmhasly, L. Wilfert, W. Durka, S. Franke, W. Francke, R.H. Leuthold and R. Brandl. 2004. Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J. Chem. Ecol. 30: 365-385. https://doi.org/10.1023/B:JOEC.0000017983.89279.c5
  22. Kim, G.H., J. Takabayashi, S. Takahashi and K. Tabata. 1992. Function of pheromones in mating behavior of the Japanese pine sawyer beetle, Monochamus alternatus Hope. Appl. Entomol. Zool. 27: 525-535.
  23. Kim, J.S., M.K. Kim, J.H. Han, C. Yoon, K.S. Choi, S.C. Shin and G.H. Kim. 2006. Possible presence of pheromone in mating behavior of the pine sawyer Monochamus saltuarius Gebler (Coleoptera: Cerambycidae). J. Asia-Pac. Entomol. 9: 347-352. https://doi.org/10.1016/S1226-8615(08)60313-1
  24. Liebig, J., C. Peeters, N.J. Oldham, C. Markastadter and B. Holldobler. 2000. Are variation in cuticular hydrocarbons of queens and worker a reliable signal of fertility in the ant Harpegnathos saltator? PNAS 97: 4124-4131. https://doi.org/10.1073/pnas.97.8.4124
  25. Lee, C.J., J.Y. Shen, S.C. Park and J.H. Shim. 2003. Chemical analysis of cuticular hydrocarbons in Apis melifera L. and A. cerana F. Korean J. Appl. Entomol. 42: 9-13.
  26. Lockey, K.H. 1988. Lipids of the insect cuticle: origin, composition and function. Comp. Biochem. Physiol. 89B: 595-645.
  27. Lorenzi, M.C., M.F. Sledge, P. Laiolo, E. Sturlini and S. Turillazzi. 2004. Cuticular hydrocarbon dynamics in young adult Polistes dominulus (Hymenoptera: Vespidae) and the role of linear hydrocarbons in nestmate recognition systems. J. Insect Physiol. 50: 935-941. https://doi.org/10.1016/j.jinsphys.2004.07.005
  28. Lucas, C., D.B. Pho, J.M. Jallon and D. Fresneau. 2005. Role of cuticular hydrocarbons in the chemical recognition between ant species in the Pachycondyla villosa species complex. J. Insect Physiol. 51: 1148-1157. https://doi.org/10.1016/j.jinsphys.2005.06.003
  29. Nelson, D.R. 1993. Methyl-branched lipids in insects, pp. 271-315. In Insect lipids: Chemistry, biochemistry and biology, eds. by D. W. Stanley-Samuelson and D. R. Nelson eds. University of Nebraska Press, Lincoln, Nebraska.
  30. Nelson, D.R. and L.D. Charlet. 2003. Cuticular hydrocarbons of the sunflower beetle, Zygogramma exclamationis. Comp. Biochem. Physiol. B. 135: 273-284. https://doi.org/10.1016/S1096-4959(03)00080-0
  31. Nunes, T.M., I.C.C. Turatti, S. Mateus, F.S. Nascimento, N.P. Lopes and R. Zucchi. 2009. Cuticular hydrocarbons in the stingless bee Schwarziana quadripunctata (Hymenoptera, Apidae, Meliponini): differences between colonies, castes and age. Gen. Mol. Res. 8: 589-595. https://doi.org/10.4238/vol8-2kerr012
  32. Page, M., L.J. Nelson, G.J. Blomquist and S.J. Seybold. 1997. Cuticular hydrocarbons as chemotaxonomic characters of pine engravcr beetles (lps spp.) in the grandicollis subgeneric group. J. Chem. Ecol. 23: 1053-1099. https://doi.org/10.1023/B:JOEC.0000006388.92425.ec
  33. Said, I., G. Costagliola, I. Leoncini and C. Rivault. 2005. Cuticular hydrocarbon profiles and aggregation in four Periplaneta species (Insecta: Dictyoptera). J. Insect Physiol. 51: 995-1003. https://doi.org/10.1016/j.jinsphys.2005.04.017
  34. Sledge, M.F., I. Trinca, A. Massolo, F. Boscaro and S. Turillazzi. 2004. Variation in cuticular hydrocarbon signatures, hormonal correlates and establishment of reproductive dominance in a polistine wasp. J. Insect Physiol. 50: 73-78. https://doi.org/10.1016/j.jinsphys.2003.10.001
  35. Smith, A.A., B. Holldober and J. Liebig. 2009. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Current Biol. 19: 78-81. https://doi.org/10.1016/j.cub.2008.11.059
  36. Torres, C.W., M. Brandt and N.D. Tsutsui. 2007. The role of cuticular hydrocarbons as chemical cues for nestmate recognition in the invasive Argentine ant (Linepithema humile). Insect Sociaux 54: 363-373. https://doi.org/10.1007/s00040-007-0954-5
  37. Urech, R., G.W. Brown, C.J. Moore and P.E. Green. 2005. Cuticular hydrocarbons of buffalo fly, Haematobia exigua and chemotaxonomic differentiation from horn fly, H irritans. J. Chem. Ecol. 31: 2451-2461. https://doi.org/10.1007/s10886-005-7112-1

피인용 문헌

  1. Changes in cuticular hydrocarbons in different developmental stages of the bean bug, Riptortus pedestris (Hemiptera: Alydidae) vol.15, pp.4, 2012, https://doi.org/10.1016/j.aspen.2012.05.016
  2. Comparison of Cuticular Hydrocarbons of Different Developmental Stages of the Spot Clothing Wax Cicada, Lycorma delicatula (Hemiptera: Fulgoridae) vol.50, pp.3, 2011, https://doi.org/10.5656/KSAE.2011.07.027