DOI QR코드

DOI QR Code

Species Richness of Aquatic Insects in Wetlands along the Altitudinal Gradient in Jeju, Korea : Test of Rapoport's Rule

고도에 따른 제주 습지 수서곤충의 종풍부성 변화 : Rapoport 법칙의 검정

  • Jeong, Sang-Bae (Depart. of Biology, Jeju National University) ;
  • Kim, Dong-Soon (Faculty of Bioscience and Industry, College of Agriculture and Life Science, Jeju National University) ;
  • Jeon, Hyeong-Sik (Depart. of Biology, Jeju National University) ;
  • Yang, Kyoung-Sik (Research Institute for Biodiversity of Jeju) ;
  • Kim, Won-Taek (Depart. of Biology, Jeju National University)
  • 정상배 (제주대학교 자연과학대학 생물학과) ;
  • 김동순 (제주대학교 생명자원과학대학 생물산업부 식물자원환경) ;
  • 전형식 (제주대학교 자연과학대학 생물학과) ;
  • 양경식 (제주생물종다양성연구소) ;
  • 김원택 (제주대학교 자연과학대학 생물학과)
  • Received : 2010.06.23
  • Accepted : 2010.09.06
  • Published : 2010.09.30

Abstract

The effect of altitude and latitude on biodiversity (or species richness) has been a topic of great interest for many biogeographers for a long time. This study was conducted to examine the dynamics of species richness of aquatic insects along the altitudinal gradient in 24 wetlands on Mt. Halla, Jeju and test the Rapoport's rule. The species richness of aquatic insects monotonically decreased with increasing altitude, showing a significant inverse correlation (r = -0.64). However, the pattern of species richness with altitude showed a hump-shaped relationship, with a peak in species richness at intermediate elevations when the effects of area were removed. The altitudinal range of species tended to increase with increasing altitude, as Rapoport's rule predicts. There was a positive correlation between the altitudinal range size and the midpoint of the range size (Median) except for Hemiptera (Odonata: r = 0.75, Hemiptera: r = -0.22, Coleoptera: r = 0.72, Total: r = 0.55). Also, the extent of average altitudinal range of high-altitude species was 904.3m, and it was significantly wider than a 469.5m of low-altitude species. Consequently, the species richness of aquatic insects in wetlands on Mt. Halla along the altitudinal gradient well supported Rapoport's rule.

생물다양성(또는 종풍부성)에 미치는 고도 또는 위도 효과는 과거에서부터 현재까지 생물지리학자들의 최대관심사 중 하나라 할 수 있다. 본 연구는 제주도 한라산 24개 습지에 발생하는 수서곤충을 대상으로 고도구배에 따른 출현 종수(종풍부성)의 변화특성을 구명하고 Rapoport의 법칙을 검정하고자 실시하였다. 습지의 면적 효과를 제거하지 않았을 때 해발고도가 증가 할수록 수서곤충 출현 종수는 단조적으로(monotonical) 감소하였고 상관분석결과 통계적으로 유의한 역상관 관계를 보였다(r = -0.64). 고도와 출현 종수의 관계에서 출현 종수를 면적 대비 표준화하여 면적 효과를 제거한 결과 고도의 증가에 따라 처음에는 출현 종수가 증가하다가 최고점을 지나서는 감소하는 전형적인 고봉형 양상(hump-shaped pattern)을 나타냈다. 각 종의 평균 서식고도(수직분포의 중위값)와 수직서식분포 범위와의 관계는 평균 서식고도가 높을수록 분포범위가 증가하는 Rapport의 법칙을 따랐다. 노린재목을 제외하고 평균 서식고도와 수직분포 범위 간에는 정상관을 보였다(잠자리목: r = 0.75, 노린재목: r = -0.22, 딱정벌레목: r = 0.72, 전체: r = 0.55). 또한 상위영역 종은 평균 분포범위가 904.3m로 하위영역 종의 469.5m보다 통계적으로 유의하게 분포범위가 넓었다. 종합적으로 판단할 때 고도별 한라산 습지 수서곤충의 종풍부성 분포는 Rapoport의 법칙에 잘 일치되었다.

Keywords

References

  1. Anonymous. 1994. Check list of insects from Korea (In Korean). 744 pp. The Entomological Society of Korea & Korean Society of Applied Entomol., Konkuk Univ. Publisher, Seoul.
  2. Asahino, S., T. Ishihara and K. Yasumatsu. 1973. Iconographia insectorum japonicorum Colore naturali edita, Volumen III. Hokuryukan. pp. 103-108.
  3. Blackbum T.M. and K.J. Gaston. 1996. Spatial ptterns in the geographic range sizes of bird species in the New World. Philos. Trans. R. Soc. Lond. B 351: 897-912. https://doi.org/10.1098/rstb.1996.0083
  4. Brown, J.H. and A. Kodric-Brown. 1977. Turnover rates in insular biogeography: effect of immigrarion on extinction. Ecology 58: 445-449. https://doi.org/10.2307/1935620
  5. Brown, J.H., G.C. Stevens and D.M. Kaufman. 1996. The geographical range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27: 597-623. https://doi.org/10.1146/annurev.ecolsys.27.1.597
  6. Chatzaki, M., P. Lymberakis, G. Markakis and M. Mylonas. 2005. The distribution of ground spiders (Araneae, Gnaphosidae) along the altitudinal gradinal of Crete, Greece: species richness, activity and altitudinal range. J. Biogeogr. 32: 813-831. https://doi.org/10.1111/j.1365-2699.2004.01189.x
  7. Colwell, R.K. and D.C. Lees. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15: 70-76. https://doi.org/10.1016/S0169-5347(99)01767-X
  8. Colwell, R.K. and G.C. Hurtt. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. Am. Nat. 144: 570-595. https://doi.org/10.1086/285695
  9. Fernandes, G.W. and P.W. Price. 1988. Biogeographical gradients in galling species richness. Oecologia 76: 161-167. https://doi.org/10.1007/BF00379948
  10. Fleishman, E., G.T. Austin, and A.D. Weiss. 1998. An empirical test of Rapoport's rule: elevational gradients in montane butterfly communities. Ecology 79: 2482-2493.
  11. Hogg, I.D. and D.D. Williams. 1996. Response of stream invertebrates to a global-warming thermal regime: an ecosystemlevel manipulation. Ecology 77: 395-407. https://doi.org/10.2307/2265617
  12. Jandel Scientific. 1996. TableCurve 2D. Automated curve fitting and equation discovery: Version 4.0. Jandel Scientific, San Rafel, CA.
  13. Kawai, D. 2005. Aquatic insects of Japan. East Sea Univ. Publish group. 658 pp.
  14. Lawton, J.H., M. MacGarvin and P.A. Heads. 1987. Effects of altitude on the abundance and species richness of insect herbivores on bracken. J. Anim. Ecol. 56: 147-160. https://doi.org/10.2307/4805
  15. Lomolino, M.V. 2001. Elevation gradients of species-density: historical and prospective views. Global Ecol. Biogeogr. 10: 3-13 https://doi.org/10.1046/j.1466-822x.2001.00229.x
  16. Rahbek, C. 1997. The relationship among area, elevation, and regional species richness in neotropical birds. Am. Nat. 149: 875-902.
  17. RDA (Rural Development Administration). 2008. An illustrated book for aquatic invertebrate in rice ecosystem. 416 pp. National Institute of Agricultural Science and Technology, Kangmoon-dang, Suwon.
  18. Sanders, N.J. 2002. Elevational gradients in ant species richness: Area, geometry, and Rapoport's rule. Ecography 25: 25-32. https://doi.org/10.1034/j.1600-0587.2002.250104.x
  19. Schoener, T.W. 1976. The species-area relation within archipelagoes: models and evidence from island land birds. In: Firth, H.J. and Calaby, J.H. (eds), Proc. of the XVI Int. Ornithol. Congr. Australian Acad. of Sci., pp. 629-642.
  20. Southwood, T.R.E. 1978. Ecological methods. Halsted Press, Capman and Hall. London. 524 pp
  21. Stevens, G.C. 1992. The elevational gradient in altitudinal range: an extension of Rapoport's latitudinal rule to altitude. Am. Nat. 140: 893-911. https://doi.org/10.1086/285447
  22. Takehiko N., O. Kazuo, N. Shizumu and K. Yoshihiko. 2007. Iconographia Insectorum Japonicorum Colore Naturali Edita Vol. II. Hokuryukan. 526 pp.
  23. Ueno, S., Y. Kurosawa and M. Sato. 1985. Coleoptera of japan in color Vol. II. Hoikusha. 515 pp.
  24. Ward, J.V. and J.A. Stanford. 1982. Thermal responses in the evolutionarγ ecology of aquatic insects. Annu. Rev. Entomol. 27: 97-117. https://doi.org/10.1146/annurev.en.27.010182.000525
  25. Won, D.H. S.J. Kwon and Y.C. Jeon. 2005. Aquatic insects of Korea. Ecological Survey Team Press, 415 pp.
  26. Yoon, I.B. 1995. An explanatory diagram and identification key, of aquatic insects. Junghaengsa, Seoul, 237 pp.

Cited by

  1. Characteristics Communities Structure of Benthic Macroinvertebrates at Irrigation Ponds, within Paddy Field vol.32, pp.4, 2013, https://doi.org/10.5338/KJEA.2013.32.4.304
  2. Distribution of vascular plants along the altitudinal gradient of Gyebangsan (Mt.) in Korea vol.7, pp.1, 2014, https://doi.org/10.1016/j.japb.2014.03.008