Inhibitory Effect of the Phenolic Compounds from Apples Against Oxidative Damage and Inflammation

  • Sim, Jang-Seop (Cheongsong Agriculture Technology & Extension) ;
  • Jeong, Jin-Boo (Bioresource Sciences, Andong National University) ;
  • Lee, Jong-Hwa (Food Science and Biotechnology Major, Andong National University) ;
  • Kwon, Tae-Hyung (Food Science and Biotechnology Major, Andong National University) ;
  • Cha, Young-Joon (Department of Information Statistics, Andong National University) ;
  • Jeong, Hyung-Jin (Bioresource Sciences, Andong National University)
  • Received : 2010.06.16
  • Accepted : 2010.10.28
  • Published : 2010.12.31

Abstract

ROS have been associated with pathogenic processes including carcinogenesis through direct effect on DNA and play an important role in the pathogenesis of inflammation. Because of many types of phenolic acid derivatives and flavonoids, apples have been one of the human diet since ancient times and are one of the most commonly consumed fruits in worldwide. In this study, catechin, chlorogenic acid and phlorizin dihydrate were purified and identified by HPLC and GC/MS. The contents of catechin, chlorogenic acid and phlorizin dihydrate were 1.01 mg, 7.01 mg and 3.67 mg/ kg wet weight, respectively. Catechin and phlorizin dihydrate were found to significantly inhibit oxidative DNA damage, while chlorogenic did not affect. Also, catechin inhibits NO and $PGE_2$ production via suppressing iNOS and COX-2 expression. However, chlorogenic acid and phlorizin dihydrate did not affect. Our results show that catechin may be the most active phenolic compound in anti-oxidative damage and anti-inflammatory effect.

Keywords

References

  1. Akiyama, H., J. Sakushima, S. Taniuchi, T. Kanda, A. Yanagida, T. Kojima, R. Teshima, Y. Kobayashi, Y. Goda, M. Toyoda. 2000. Antiallergic effect of apple polyphenols on the allergic model mouse. Biol. Pharm. Bull. 23: 1370-1373. https://doi.org/10.1248/bpb.23.1370
  2. Ames, B.N. 1989. Endogenous oxidative DNA damage, aging, and cancer. Free Radic. Res. Commun. 7: 121-128. https://doi.org/10.3109/10715768909087933
  3. Amin, I., M.M. Zamaliah, W.F. Chin. 2004. Total antioxidant activity and phenolic content in selected vegetables. Food Chem. 87: 581-586. https://doi.org/10.1016/j.foodchem.2004.01.010
  4. Arts, I.C., P.C. Hollman, E.J. Feskens, H.B. Bueno de Mesquita, D. Kromhout. 2001.Catechin intake and associated dietary and lifestyle factors in a representative sample of Dutch men and women. Eur. J. Clin. Nutr. 55: 76-81. https://doi.org/10.1038/sj.ejcn.1601115
  5. Banskota, A.H., Y. Tezuka, N.Y. Nguyen, S. Awale, T. Vobukawa, S. Kadota. 2003. DPPH radical scavenging and nitric oxide inhibitory activities of the constituents from the wood of Taxus yunnanensis. Planta Med. 69: 500-505. https://doi.org/10.1055/s-2003-40641
  6. Bartosz, G. 1997.Oxidative stress in plants. Acta Physiol. Plant. 19: 47-64. https://doi.org/10.1007/s11738-997-0022-9
  7. Berenbaum, F. 2000. Proinflammatory cytokines, prostaglandins, and the chondrocyte: mechanism of intracellular activation. Joint Bone Spine. 67: 561-564. https://doi.org/10.1016/S1297-319X(00)00212-8
  8. Bharat Reddy, D., P. Reddanna. 2009. Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NFĸB and MAPK activation in RAW264.7 macrophages. Biochem. Biophys. Res. Commun. 381: 112-117. https://doi.org/10.1016/j.bbrc.2009.02.022
  9. Brown, K.L., C. Cosseau, J.L. Gardy, R.E.W. Hancock. 2007. Complexities of targeting innate immunity to treat infection. Trends Immunol. 28: 260-266. https://doi.org/10.1016/j.it.2007.04.005
  10. Cozzi, R., R. Ricordy, T. Aglitti, V. Gatta, P. Perticone, R. De Salvia. 1997. Ascorbic acid and beta-carotene as modulators of oxidative damage. Carcinogenesis. 18: 223-228. https://doi.org/10.1093/carcin/18.1.223
  11. Fujiwara, N., K. Kobayashi. 2005. Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy. 4: 281-286. https://doi.org/10.2174/1568010054022024
  12. Geronikaki, A.A., A.M. Gavalas. 2006. Antioxidants and antiinflammatory diseases: synthetic and natural antioxidants with anti-inflammatory activity. Comb. Chem. High T. Scr. 9: 425-442.
  13. Halliwell, B. 1994. Free radicals and antioxidants: a personal view. Nutr .Rev. 52: 253-265.
  14. Halliwell, B., J.M.C. Gutteridge. 2000. Oxidative Stress. Free Radicals in Biology and Medicine (3rd ed.), Oxford University Press, New York.
  15. Harborne, J.B. 1988. The Flavonoids; Advances in Research Since 1980. Chapman and Hall, New York.
  16. Hertog, M.G., E.J. Feskens, P.C. Hollman, M.B. Katan, D. Kromhout. 1993. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342: 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
  17. Jung, Y., Y. Surh. 2001. Oxidative DNA damage and cytotoxicity unduced by copper-stimulated redox cycling of salsolinol, a neurotoxic tetrahydroisoquinoline alkaloid. Free Radical Bio. Med. 30: 1407-1417. https://doi.org/10.1016/S0891-5849(01)00548-2
  18. Kanda, T., H. Akiyama, A. Yanagida, M. Tanabe, Y. Goda, M. Toyoda, R. Teshima, Y. Saito.1998. Inhibitory effects of apple polyphenol on induced histamine release from RBL-2H3 cells and rat mast cells. Biosci. Biotech. Biochem. 62: 1284-1289. https://doi.org/10.1271/bbb.62.1284
  19. Kojima, T., H. Akiyama, M. Sasai, S. Taniuchi, Y. Goda, M. Toyoda, Y. Kobayashi. 2000. Anti-allergic effect of apple polyphenol on patients with atopic dermatitis: a pilot study. Allerg. Int. 49: 69-73. https://doi.org/10.1046/j.1440-1592.2000.00161.x
  20. Kong, A.N., R. Yu, V. Hebbar, C. Chen, E. Owuor, R. Hu, R. Ee, S. Mandlekar.2001. Signal transduction events elicited by cancer prevention compounds. Mutat. Res. 480/481: 231-241. https://doi.org/10.1016/S0027-5107(01)00182-8
  21. Leja, M., A. Mareczek, J. Ben. 2003. Antioxidant properties of two apple cultivars during long-term storage. Food Chem. 80: 303-307. https://doi.org/10.1016/S0308-8146(02)00263-7
  22. Li, H.B., C.C. Wong, K.W. Cheng, F. Chen.2008. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT - Food Sci. Technol. 41: 385-390. https://doi.org/10.1016/j.lwt.2007.03.011
  23. Li, Y., M.A. Trush. 1993.Oxidation of hydroquinone by copper: chemical mechanism and biological effects. Arch. Biochem. Biophys. 300: 346-355. https://doi.org/10.1006/abbi.1993.1047
  24. Lister, C.E., J.E. Lancaster, K.H. Sutton, J.R.L. Walker. 1994. Developmental changes in the concentration and composition of flavonoids in skin of a red and a green apple cultivar. J. Sci. Food Agr. 64: 155-161. https://doi.org/10.1002/jsfa.2740640204
  25. Lopaczynski, W., Zeisel, S.H. 2001. Antioxidants, programmed cell death, and cancer. Nutrition Res. 21: 295-307. https://doi.org/10.1016/S0271-5317(00)00288-8
  26. Menichini, F., F. Conforti, D. Rigano, C. Formisano, F. Piozzi, F. Senatore. 2009. Phytochemical compositon, anti-inflammatory and antitumour activities of four Teucrium essential oils from Greece. Food Chem. 115: 679-686. https://doi.org/10.1016/j.foodchem.2008.12.067
  27. Moncada, S., R.M. Palmer, E.A. Higgs. 1991. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43: 109-142.
  28. Pietraforte, D., L. Turco, E. Azzini, M. Minetti. 2002. On-line EPR study of free radicals induced by peroxidase/H2O2 in human low-density lipoprotein. Biochim. Biophys. Acta. 1583: 176-184. https://doi.org/10.1016/S1388-1981(02)00211-1
  29. Rogakou, E.P., D.R. Pilch, A.H. Orr, V.S. Ivanova, W.M. Bonner. 1988. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273: 5858-5868.
  30. Scalbert, A., G. Williamson. 2000. Dietary intake and bioavailability of polyphenols. J. Nutr. 130: 2073S-2085S. https://doi.org/10.1093/jn/130.8.2073S
  31. Seifried, H.E., D.E., Anderson, E.V. Fisher, J.A. Milner. 2007. A review of the interaction amone dietary antioxidants and reactive oxygen species. J. Nutri. Biochem. 28: 567-579.
  32. Shoji, T., Y. Akazome, T. Kanda, T. Ikeda. 2004. The toxicology and safety of apple polyphenol extract. Food Chem. Toxicol. 42: 959-967. https://doi.org/10.1016/j.fct.2004.02.008
  33. Shoji, T., M. Kobori, H. Shinmoto, A. Yanagida, T. Kanda, T. Tsushida.2000. Inhibitory effect of apple polyphenols on differentiation of 3T3-L1 cells onto adipocytes. Food Sci. Technol. Res. 61: 1963-1967.
  34. Spanos, G.A., E.W. Ronald, D.A. Heatherbell. 1990. Influence of processing and storage on the phenolic composition of apple juice. J. Agri. Food Chem. 38: 1572-1579. https://doi.org/10.1021/jf00097a031
  35. Stohs, S.J. 1995. The role of free radicals in toxicity and disease. J. Basic Clin. Physiol. Pharmacol. 6: 205-228. https://doi.org/10.1515/JBCPP.1995.6.3-4.205
  36. Sung, M.J., M. Davaatserem, W. Kim, S.K. Park, S.H. Kim, H.J. Hur, M.S. Kin, Y.S. Kim, D.Y. Kwon. 2009. Vitisin A suppresses LPS-induced NO production by inhibiting ERK, p38, and NF-kB activationin RAW264.7 cells. Int. Immunopharmacol. 9: 319-323. https://doi.org/10.1016/j.intimp.2008.12.005
  37. Wu, J., H. Gao, L. Zhao, X. Liao, F. Chen, Z. Wang, X. Hu. 2007. Chemical compositional characterization of some apple cultivars. Food Chem. 103: 88-93. https://doi.org/10.1016/j.foodchem.2006.07.030
  38. Yanagida, A., T. Kanda, M. Tanabe, F. Matsudaira, J.G. Oliveira Cordeiro. 2000. Inhibitory effects of apple polyphenols and related compounds on carcinogenic factors of mutans streptococci. J. Agri. Food Chem. 48: 5666-5671. https://doi.org/10.1021/jf000363i
  39. Yoon, W.J., Y.M. Ham, B.S. Yoo, J.Y. Moon, J.S. Koh, C.G. Hyun. 2009. Oenothera laciniata inhibits lipopolysaccharide induced production of nitric oxide, prostaglandin E2, and proinflammatory cytokines in RAW264.7 macrophages. J. Biosci. Bioeng. 107: 429-438. https://doi.org/10.1016/j.jbiosc.2008.11.018
  40. Zhang, G., S. Ghosh. 2000. Molecular mechanisms of NFkappaB activation induced by bacterial lipopolysaccharide through Toll-like receptors. J. Endotoxin Res. 6: 453-457. https://doi.org/10.1177/09680519000060060701