DOI QR코드

DOI QR Code

Effect of Strain Rate on Plastic Deformation Behavior of Y-CSZ Single Crystal

  • Cheong, Deock-Soo (Department of Materials Science and Engineering, Dankook University) ;
  • Kim, Chang-Sam (Battery Research Center, Korea Institute of Science and Technology)
  • Published : 2010.01.27

Abstract

Yttria stabilized zirconia (Y-CSZ) single crystals show plastic deformation at high temperatures by activating dislocations. The effect of strain rate on the plastic behavior of this crystal was studied. As increasing strain rate from $\varepsilon=1.04\times10^{-5} sec^{-1}$ to $2.08\times10^{-5} sec^{-1}$ the yield drop was suppressed and resulted in higher Young's modulus and yield stress. Dislocation structures of the strained crystals were analyzed using a transmission electron microscope to elucidate the plastic behavior of these crystals. In the early stage of plastic deformation, dislocation dipoles and prismatic dislocation loops were formed in both samples. However, dislocation density was increased by increasing strain rate. Strong sessile dislocations were observed in the sample with higher strain rate, which may cause the higher work hardening.

Keywords

References

  1. E. Fries, F. Guiberteau, A. Dominguez-Rodriguez, D. -S. Cheong and A. H. Heuer, Phil. Mag. A, 60(1), 107 (1989). https://doi.org/10.1080/01418618908221181
  2. A. Dominguez-Rodriguez, D. -S. Cheong and A. H. Heuer, Phil. Mag. A, 64(4), 923 (1991). https://doi.org/10.1080/01418619108213956
  3. D. -S. Cheong, A. Dominguez-Rodriguez and A. H. Heuer, Phil. Mag. A, 60(1), 123 (1989). https://doi.org/10.1080/01418618908221182
  4. W. G. Johnston, J. Appl. Phys., 33(9), 2050 (1962). https://doi.org/10.1063/1.1728892
  5. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley and M. J. Whelan, Electron Microscopy of Thin Crystals', Robert E. Krieger Pub. Co., Huntington, N.Y., USA (1977).
  6. R. P. Ingel, D. Lewis, B. A. Bauer and R. W. Rice, J. Am. Ceram. Soc., 65(108), 1203 (1982). https://doi.org/10.1111/j.1151-2916.1982.tb10478.x
  7. S. Amelincx and W. J. Dekeyser, J. Appl. Phys., 29, 1000 (1958). https://doi.org/10.1063/1.1723315
  8. J. J. Gilman and W. G. Johnston, Solid State Physics, 13, (1963).
  9. P. B. Hirsch and T. E. Mitchell, Work Hardening of Metals, ed. J. P. Hirth and J. Weertman, Gordon and Beach Science Publishers, Inc., N. Y., USA (1968).
  10. A. S. Tetelman, Acta. Met., 10(9), 813 (1962). https://doi.org/10.1016/0001-6160(62)90095-0
  11. C. S. Yust and C. J. MaHargue, J. Nucl. Mat. 31, 121 (1969). https://doi.org/10.1016/0022-3115(69)90187-1
  12. B. J. Pletka, T. E. Mitchell and A. H. Heuer, J. Am. Ceram. Soc., 57(9), 388 (1974). https://doi.org/10.1111/j.1151-2916.1974.tb11419.x
  13. R. L. Segall, P. G. Partridge, and P. B. Hirsch, Phil. Mag., 6, 1493 (1961). https://doi.org/10.1080/14786436108243392
  14. D. -S. Cheong, Ph. D. Thesis, C. W. R. U., Cleveland, Ohio (1989).
  15. J. J. Gilman and W. G. Johnston, Dislocations and Mechanical Properties of Crystals, p.116, Wiley, N.Y., USA (1956).