References
- I. S. Baek, Dimensions of distribution sets in the unit interval, Commun. Korean Math. Soc. 22 (2007), no. 4, 547–552. https://doi.org/10.4134/CKMS.2007.22.4.547
- I. S. A note on the moments of the Riesz-N´agy-Tak´acs distribution, J. Math. Anal. Appl. 348 (2008), no. 1, 165–168. https://doi.org/10.1016/j.jmaa.2008.07.014
- K. J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997.
- H. Fischer, On the paper: “Asymptotics for the moments of singular distributions” [J. Approx. Theory 74 (1993), no. 3, 301–334] by W. Goh and J. Wimp, J. Approx. Theory 82 (1995), no. 3, 362–374. https://doi.org/10.1006/jath.1995.1085
- W. Goh and J. Wimp, Asymptotics for the moments of singular distributions, J. Approx. Theory 74 (1993), no. 3, 301–334. https://doi.org/10.1006/jath.1993.1068
- P. J. Grabner and H. Prodinger, Asymptotic analysis of the moments of the Cantor distribution, Statist. Probab. Lett. 26 (1996), no. 3, 243–248. https://doi.org/10.1016/0167-7152(95)00016-X
- F. R. Lad and W. F. C. Taylor, The moments of the Cantor distribution, Statist. Probab. Lett. 13 (1992), no. 4, 307–310. https://doi.org/10.1016/0167-7152(92)90039-8
- J. Paradıs, P. Viader, and L. Bibiloni, Riesz-Nagy singular functions revisited, J. Math. Anal. Appl. 329 (2007), no. 1, 592–602. https://doi.org/10.1016/j.jmaa.2006.06.082
- W. Rudin, Principles of Mathematical Analysis, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-Dusseldorf, 1976.