References
- D. E. Blair and S. Ianus, Critical associated metrics on symplectic manifolds, Nonlinear problems in geometry (Mobile, Ala., 1985), 23–29, Contemp. Math., 51, Amer. Math. Soc., Providence, RI, 1986. https://doi.org/10.1090/conm/051/848929
- A. Gray, The structure of nearly K¨ahler manifolds, Math. Ann. 223 (1976), no. 3, 233–248. https://doi.org/10.1007/BF01360955
- A. Gray, Curvature identities for Hermitian and almost Hermitian manifolds, Tohoku Math. J. (2) 28 (1976), no. 4, 601–612. https://doi.org/10.2748/tmj/1178240746
- A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35–58. https://doi.org/10.1007/BF01796539
- D. Hilbert, Die Grundlagen der Physik, Nachr. Ges. Wiss. Gott. (1915), 395–407.
- T. Koda, Critical almost Hermitian structures, Indian J. Pure Appl. Math. 26 (1995), no. 7, 679–690.
- S. Koto, Some theorems on almost Kahlerian spaces, J. Math. Soc. Japan 12 (1960), 422–433. https://doi.org/10.2969/jmsj/01240422
- T. Oguro and K. Sekigawa, Some critical almost K¨ahler structures, Colloq. Math. 111 (2008), no. 2, 205–212. https://doi.org/10.4064/cm111-2-4
- T. Oguro, K. Sekigawa, and A. Yamada, Some critical almost K¨ahler structures with a fixed Kahler class, Topics in contemporary differential geometry, complex analysis and mathematical physics, 269–277, World Sci. Publ., Hackensack, NJ, 2007.
- K. Sekigawa, On some 4-dimensional compact almost Hermitian manifolds, J. Ramanujan Math. Soc. 2 (1987), no. 2, 101–116.
- K. Sekigawa, Almost Hermitian manifolds satisfying some curvature conditions, Kodai Math. J. 2 (1979), no. 3, 384–405. https://doi.org/10.2996/kmj/1138036068
Cited by
- CRITICAL HERMITIAN STRUCTURES ON THE PRODUCT OF SASAKIAN MANIFOLDS vol.09, pp.07, 2012, https://doi.org/10.1142/S0219887812500557
- Some Critical Almost Hermitian Structures vol.63, pp.1-2, 2013, https://doi.org/10.1007/s00025-011-0143-8
- Curvature identities derived from the integral formula for the first Pontrjagin number vol.31, pp.4, 2013, https://doi.org/10.1016/j.difgeo.2013.04.005
- CURVATURE IDENTITIES DERIVED FROM AN INTEGRAL FORMULA FOR THE FIRST CHERN NUMBER vol.50, pp.4, 2013, https://doi.org/10.4134/BKMS.2013.50.4.1261