References
- W. Feller, An Introduction to Probability Theory and Its Applications, volume II, 2nd edition, John Wiley & Sons, New York, 1971.
- B. Gnedenko, Limit theorems for sums of a random number of positive independent random variables, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, Univ. California Press, Berkeley, Calif. (1972), 537–549.
- B. Gnedenko, On limit theorems for a random number of random variables, Probability theory and mathematical statistics (Tbilisi, 1982), Lecture Notes in Math., 1021 Springer, Berlin, (1983), 167–176. https://doi.org/10.1007/BFb0072914
- A. Krajka, Z. Rychlik, Necessary and sufficient conditions for weak convergence of random sums of independent random variables, Comment. Math. Univ. Carolinae 34 (1993), no. 3, 465–482.
- V. Kruglov and V. Korolev, Limit Theorems for Random Sums, Moscow University Press, Moscow, 1990.
- J. Melamed, Limit theorems in the set-up of summation of a random number of independent identically distributed random variables, Lecture Notes in Math., Vol. 1412, Springer, Berlin, (1989), 194–228. https://doi.org/10.1007/BFb0084174
- J. Modyorodi, A central limit theorem for the sums of a random number of random variables, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 10 (1967), 171–182.
- H. Robbins, The asymptotic distribution of the sum of a random number of random variables, Bull. Amer. Math. Soc. 54 (1948), 1151–1161. https://doi.org/10.1090/S0002-9904-1948-09142-X
- Z. Rychlik and D. Szynal, On the limit behaviour of sums of a random number of independent random variables, Colloq. Math. 28 (1973), 147–159. https://doi.org/10.4064/cm-28-1-147-159
- Z. Rychlik and T. Walczynski, Convergence in law of random sums with nonrandom centering, J. Math. Sci. (New York) 106 (2001), 2860–2864. https://doi.org/10.1023/A:1011376128269
- D. O. Selivanova, Estimates for the rate of convergence in some limit theorems for geometric random sums, Moscow Univ. Comput. Math. Cybernet. (1995), no. 2, 27–31.
- Yu. B. Shvetlov and John J. Borkowski, Random sum estimators and their efficiency, Technical Report, Department of Mathematical Science, Montana State University, (2004), 1–20.
- D. Szasz, Limit theorems for the distributions of the sums of a random number of random variables, Ann. Math. Statist. 43 (1972), 1902–1913. https://doi.org/10.1214/aoms/1177690861
- P. Vellaisamy and B. Chaudhuri, Poisson and compound Poisson approximations for random sums of random variables, J. Appl. Probab. 33 (1996), 127–137. https://doi.org/10.2307/3215270
Cited by
- Central Limit Theorem for the Sum of a Random Number of Dependent Random Variables vol.4, pp.3, 2011, https://doi.org/10.3923/ajms.2011.168.173
- On the rate of convergence in limit theorems for random sums via Trotter-distance vol.2013, pp.1, 2013, https://doi.org/10.1186/1029-242X-2013-404
- An Estimate of the Probability Density Function of the Sum of a Random NumberNof Independent Random Variables vol.2015, 2015, https://doi.org/10.1155/2015/801652