References
- Holler, U.; Wright, A. D.; Matthee, G. F.; Konig, G. M.; Draeger, S.; Aust, H. J.; Schulz, B. Mycol. Res. 2000, 104, 1354. https://doi.org/10.1017/S0953756200003117
- Renner, M. K.; Jensen, P. R.; Fenical, W. J. Org. Chem. 2000, 65, 4843. https://doi.org/10.1021/jo000081h
- Lee, Y. M.; Mansoor, T. A.; Hong, J.; Lee, C. O.; Bae, K. S.; Jung, J. H. Nat. Prod. Sci. 2007, 13, 90.
- Boot, C, M.; Amagata, T.; Tenney, K.; Compton, J. E.; Pietraszkiewicz, H.; Valeriote, F. A.; Crews P. Tetrahedron 2007, 63, 9903. https://doi.org/10.1016/j.tet.2007.06.034
- Amagata, T.; Morinaka, B. I.; Amagata, A.; Tenney, K.; Valeriote, F. A.; Lobkovsky, E.; Clardy, J.; Crews, P. J. Nat. Prod. 2006, 69, 1560. https://doi.org/10.1021/np060178k
- Adachi, K.; Kaneo, K.; Puntip, W.; Miyuki, N.; Yoshikazu, S. J. Antibiot. 2005, 58, 145. https://doi.org/10.1038/ja.2005.17
- Cruz, L. J.; Insua, M. M.; Baz, J. P.; Trujillo, M.; Rodriguez-Mias, R. A.; Oliveria, E.; Giralt, E.; Albericio, F.; Canedo, L. M. J. Org. Chem. 2006, 71, 3335. https://doi.org/10.1021/jo051600p
- Boot, C. M.; Tenney, K.; Valeriote, F. A.; Crews, P. J. Nat. Prod. 2006, 69, 83. https://doi.org/10.1021/np0503653
- Bringmann, G.; Lang, G.; Steffens, S.; Schaumann, K. J. Nat. Prod. 2004, 67, 311. https://doi.org/10.1021/np034015x
- Shigemori, H.; Wakuri, S.; Yazawa, K.; Nakamura, T.; Sasaki, T.; Kobayashi, J. Tetrahedron 1991, 47, 8529. https://doi.org/10.1016/S0040-4020(01)82396-6
- Rowley, D. C.; Kelly, S.; Jensen, P.; Fenical, W. Bioorg. Med. Chem. 2004, 12, 4929. https://doi.org/10.1016/j.bmc.2004.06.044
- Marfey, P. Carlsberg Res. Commun. 1984, 49, 591. https://doi.org/10.1007/BF02908688
- Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512. https://doi.org/10.1021/ja00783a034
- Lim, Y. J.; Park, H. S.; Im, K. S.; Lee, C. O.; Hong, J.; Lee, M. Y.; Kim, D. K.; Jung, J. H. J. Nat. Prod. 2001, 64, 46. https://doi.org/10.1021/np000252d
- Hyde, K. D.; Farrant, C. A.; Jones, E. B. G. Bot. Mar. 1987, 30, 291. https://doi.org/10.1515/botm.1987.30.4.291
- Williams, D. E.; Craig, M.; Holmes, C. F. B.; Andersen, R. J. J. Nat. Prod. 1996, 59, 570. https://doi.org/10.1021/np960108l
- Maddox, N. J.; Lin, S. J. Liq. Chrom. Rel. Technol. 1999, 22, 1367. https://doi.org/10.1081/JLC-100101738
Cited by
- Marine Drugs from Sponge-Microbe Association—A Review vol.8, pp.4, 2010, https://doi.org/10.3390/md8041417
- Secondary metabolites of fungi from marine habitats vol.28, pp.2, 2011, https://doi.org/10.1039/c0np00061b
- Analogues of Hybrid Antimicrobial Peptide, CAMA-P2, Designed with Improved Antimicrobial and Synergistic Activities vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2577
- Marine natural products vol.29, pp.2, 2012, https://doi.org/10.1039/C2NP00090C
- Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites vol.55, pp.1, 2012, https://doi.org/10.1007/s13225-011-0137-6
- Marine-Derived Aspergillus Species as a Source of Bioactive Secondary Metabolites vol.15, pp.5, 2013, https://doi.org/10.1007/s10126-013-9506-3
- vol.16, pp.12, 2014, https://doi.org/10.1021/ol501271v
- Total synthesis of fellutamides, lipopeptide proteasome inhibitors. More sustainable peptide bond formation vol.14, pp.35, 2016, https://doi.org/10.1039/C6OB01233G
- sp. Fungus vol.19, pp.8, 2017, https://doi.org/10.1021/acs.orglett.7b00661
- Seven New and Two Known Lipopeptides as well as Five Known Polyketides: The Activated Production of Silent Metabolites in a Marine-Derived Fungus by Chemical Mutagenesis Strategy Using Diethyl Sulphate vol.12, pp.4, 2014, https://doi.org/10.3390/md12041815
- Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications vol.14, pp.2, 2016, https://doi.org/10.3390/md14020038
- Cytotoxic Natural Products from Marine Sponge-Derived Microorganisms vol.15, pp.3, 2017, https://doi.org/10.3390/md15030068
- ChemInform Abstract: A Cytotoxic Lipopeptide from the Sponge-Derived Fungus Aspergillus versicolor vol.41, pp.22, 2010, https://doi.org/10.1002/chin.201022167
- A Cytotoxic Fellutamide Analogue from the Sponge-Derived Fungus Aspergillus versicolor vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3817
- Bioactive Anthraquinones from Endophytic Fungus Aspergillus versicolor Isolated from Red Sea Algae vol.35, pp.10, 2012, https://doi.org/10.1007/s12272-012-1006-x
- Synthesis of Fellutamide C and its Diastereomer vol.33, pp.8, 2010, https://doi.org/10.5012/bkcs.2012.33.8.2777
- Effectiveness of Marine Fungal Symbiont Isolated from Soft Coral Sinularia sp. from Panjang Island as Antifungal vol.23, pp.None, 2010, https://doi.org/10.1016/j.proenv.2015.01.051
- Exploration of Fungal Metabolic Interactions Using Imaging Mass Spectrometry on Nanostructured Silicon vol.81, pp.7, 2010, https://doi.org/10.1021/acs.jnatprod.7b00866
- Biological and Chemical Diversity of Marine Sponge-Derived Microorganisms over the Last Two Decades from 1998 to 2017 vol.25, pp.4, 2010, https://doi.org/10.3390/molecules25040853
- Identification of Secondary Metabolites from Aspergillus pachycristatus by Untargeted UPLC-ESI-HRMS/MS and Genome Mining vol.25, pp.4, 2010, https://doi.org/10.3390/molecules25040913
- Marine Sponge-Associated Fungi as Potential Novel Bioactive Natural Product Sources for Drug Discovery: A Review vol.20, pp.None, 2010, https://doi.org/10.2174/1389557520666200826123248
- Biological activities and variation of symbiotic fungi isolated from Coral reefs collected from Red Sea in Egypt vol.11, pp.3, 2020, https://doi.org/10.1080/21501203.2020.1741470
- Fungal Secondary Metabolites as Inhibitors of the Ubiquitin-Proteasome System vol.22, pp.24, 2010, https://doi.org/10.3390/ijms222413309