DOI QR코드

DOI QR Code

Study of CO Oxidation on Well-Characterized Pt-Ru/C Electrocatalysts Having Different Composition

  • Min, Myoung-Ki (Department of Chemistry, Seoul National University) ;
  • Kim, Joo-Hoon (Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University) ;
  • Kim, Ha-Suck (Department of Chemistry, Seoul National University)
  • Published : 2010.01.20

Abstract

In this paper, we characterized bimetallic Pt-Ru/C alloy catalysts having four different compositions and compared the catalytic activities of the prepared alloys for CO oxidation. ICP-AES, EDS, XRD, TEM, and XAS were used to investigate the composition, degree of alloying, particle size, and electronic structure of the prepared Pt-Ru/C catalysts. Those results indicated the synthesis of the alloy catalysts with intended composition and uniform size. The electrochemical study of the characterized alloys showed higher catalytic activity for CO oxidation than that of the commercial Pt/C (E-TEK, Inc., 20 wt %) catalyst. Especially, it was shown that the alloy catalyst with Ru composition of 50 atomic % gave the highest catalytic activity for CO oxidation.

Keywords

References

  1. Teng, Y.; Sakurai, H.; Ueda, A.; Kobayashi, T. Int. J. Hydrogen Energy 1999, 24, 355. https://doi.org/10.1016/S0360-3199(98)00083-4
  2. Avgouropoulos, G.; Ioannides, T.; Matralis, H. Appl. Catal. B Environ. 2005, 56, 87. https://doi.org/10.1016/j.apcatb.2004.07.017
  3. Scott, R. W. J.; Sivadinarayana, C.; Wilson, O. M.; Yan, Z.; Goodman, D. W.; Crooks, R. M. J. Am. Chem. Soc. 2005, 127, 1380. https://doi.org/10.1021/ja044446h
  4. Valden, M.; Pak, S.; Lai, X.; Goodman, D. W. Catal. Lett. 1998, 56, 7. https://doi.org/10.1023/A:1019028205985
  5. Kung, M. C.; Davis, R. J.; Kung, H. H. J. Phys. Chem. C 2007, 111, 11767. https://doi.org/10.1021/jp072102i
  6. Min, B. K.; Friend, C. M. Chem. Rev. 2007, 107, 2709. https://doi.org/10.1021/cr050954d
  7. Chang, T.; Sohn, Y. S. Bull. Korean Chem. Soc. 1986, 7, 12.
  8. Ok, J.; Kim, D. W.; Lee, C.; Choi, W. C.; Cho, S.; Kang, Y. Bull. Korean Chem. Soc. 2008, 29, 842. https://doi.org/10.5012/bkcs.2008.29.4.842
  9. Roh, H. S.; Jun, K. W. Bull. Korean Chem. Soc. 2009, 30, 153. https://doi.org/10.5012/bkcs.2009.30.1.153
  10. Gottesfeld, S.; Pafford, J. J. Electrochem. Soc. 1988, 135, 2651. https://doi.org/10.1149/1.2095401
  11. Han, K. S.; Hwang, K. J.; Han, O. H. Bull. Korean Chem. Soc. 2007, 28, 2442. https://doi.org/10.5012/bkcs.2007.28.12.2442
  12. Giorgi, L.; Pozio, A.; Bracchini, C.; Giorgi, R.; Turtu, S. J. Appl. Electrochem. 2001, 31, 325. https://doi.org/10.1023/A:1017595920726
  13. Ciapina, E. G.; Gonzalez, E. R. J. Electroanal. Chem. 2009, 626, 130. https://doi.org/10.1016/j.jelechem.2008.12.003
  14. Switzer, E. E.; Olson, T. S.; Datye, A. K.; Atanassov, P.; Hibbs, M. R.; Cornelius, C. J. Electrochim. Acta 2009, 54, 989. https://doi.org/10.1016/j.electacta.2008.08.036
  15. Marques, P.; Ribeiro, N. F. P.; Schmal, M.; Aranda, D. A. G.; Souza, M. M. V. M. J. Power Sources 2006, 158, 504. https://doi.org/10.1016/j.jpowsour.2005.09.035
  16. Arenz, M.; Stamenkovic, V.; Blizanac, B. B.; Mayrhofer, K. J.; Markovic, N. M.; Ross, P. N. J. Catal. 2005, 232, 402. https://doi.org/10.1016/j.jcat.2005.03.022
  17. Chou, J.; Pai, W. W.; Kuo, C.; Lee, J. D.; Lin, C. H.; Wei, C. J. Phys. Chem. C 2009, 113, 13151. https://doi.org/10.1021/jp811238w
  18. Wang, C.; Yin, H.; Chan, R.; Peng, S.; Dai, S.; Sun, S. Chem. Mater. 2009, 21, 433. https://doi.org/10.1021/cm802753j
  19. Chang, C. M.; Cheng, C.; Wei, C. M. J. Chem. Phys. 2008, 128, 124710/1. https://doi.org/10.1063/1.2841364
  20. Koper, M. T. M. Surf. Sci. 2004, 548, 1. https://doi.org/10.1016/j.susc.2003.10.045
  21. Inoue, M.; Nishimura, T.; Akamaru, S.; Taguchi, A.; Umeda, M.; Abe, T. Electrochim. Acta 2009, 54, 4764. https://doi.org/10.1016/j.electacta.2009.04.009
  22. Ra, Y.; Lee, J.; Kim, I.; Bong, S.; Kim, H. J. Power Sources 2009, 187, 363. https://doi.org/10.1016/j.jpowsour.2008.10.135
  23. Han, K.; Lee, J.; Kim, H. Electrochim. Acta 2006, 52, 1697. https://doi.org/10.1016/j.electacta.2006.03.098
  24. Klerke, A.; Saadi, S.; Toftegaard, M. B.; Madsen, A. T.; Nielsen, J. H.; Jense, S.; Hansen, O.; Christensen, C. H.; Quaade, U. J. Catal. Lett. 2006, 109, 7. https://doi.org/10.1007/s10562-006-0050-x
  25. Maillard, F.; Lu, G.-Q.; Wieckowski, A.; Stimming, U. J. Phys. Chem. B 2005, 109, 16230. https://doi.org/10.1021/jp052277x
  26. Spendelow, J. S.; Babu, P. K.; Wieckowski, A. Curr. Opin. Solid State Mater. Sci. 2005, 9, 37. https://doi.org/10.1016/j.cossms.2006.02.009
  27. Coutanceau, C.; Rakotondrainibe, A. F.; Lima, A.; Garnier, E.; Pronier, S.; Leger, J.-M.; Lamy, C. J. Appl. Electrochem. 2004, 34, 61. https://doi.org/10.1023/B:JACH.0000005578.83646.3a
  28. Watanabe, M.; Motoo, S. J. Electroanal. Chem. 1975, 60, 275. https://doi.org/10.1016/S0022-0728(75)80262-2
  29. Watanabe, M.; Motoo, S. J. Electroanal. Chem. 1975, 60, 267. https://doi.org/10.1016/S0022-0728(75)80261-0
  30. Watanabe, M.; Uchida, M.; Motoo, S. J. Electroanal. Chem. 1987, 229, 395. https://doi.org/10.1016/0022-0728(87)85156-2
  31. Yajima, T.; Wakabayashi, N.; Uchida, H.; Watanabe, M. Chem. Commun. 2003, 828.
  32. Krausa, M.; Vielstich, W. J. Electroanal. Chem. 1994, 379, 307. https://doi.org/10.1016/0022-0728(94)87152-3
  33. Frelink, T.; Visscher, W.; van Veen, J. A. R. Surf. Sci. 1995, 335, 353. https://doi.org/10.1016/0039-6028(95)00412-2
  34. Tong, Y.; Kim, H. S.; Babu, P. K.; Waszczuk, P.; Wieckowski, A.; Oldfield, E. J. Am. Chem. Soc. 2002, 124, 468. https://doi.org/10.1021/ja011729q
  35. Davies, J. C.; Bonde, J.; Logadottir, A.; Norskov, J. K.; Chorkendorff, I. Fuel Cells 2005, 4, 429.
  36. Wei, Z. D.; Chan, S. H. J. Electroanal. Chem. 2004, 569, 23. https://doi.org/10.1016/j.jelechem.2004.01.034
  37. Gloaguen, F.; Andolfatto, F.; Durand, R.; Ozil, P. J. Appl. Electro chem. 1994, 24, 863. https://doi.org/10.1007/BF00348773
  38. Gebel, G.; Aldebert, P.; Pineri, M. Macromolecules 1987, 20, 1425. https://doi.org/10.1021/ma00172a049
  39. Kabbabi, A.; Gloaguen, F.; Andolfatto, F.; Durand, R. J. Electroanal. Chem. 1994, 373, 251. https://doi.org/10.1016/0022-0728(94)03503-2
  40. Sayers, D. E.; Bunker, B. A. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES; Wiley-Interscience: New York, 1988.
  41. Lytle, F. W. Applications of Synchrotron Radiation; Gordon and Breach Science: New York, 1989.
  42. Chowdhury, A. J. S.; Cheetham, A. K.; Cairns, J. A. J. Catal. 1985, 95, 353. https://doi.org/10.1016/0021-9517(85)90113-7
  43. Klug, H.; Alexander, L. X-ray Diffraction Procedure; Wiley & Sons: New York, 1954.
  44. McBreen, J.; Mukerjee, S. J. Electrochem. Soc. 1995, 142, 3399. https://doi.org/10.1149/1.2049993
  45. Hadzi-Jordanov, S.; Angerstein-Kozlowska, H.; Vukovic, M.; Conway, B. E. J. Phys. Chem. 1977, 81, 2271. https://doi.org/10.1021/j100539a016
  46. Ticanelli, E.; Beery, J. G.; Paffett, M. T.; Gottesfeld, S. J. Electroanal. Chem. 1989, 258, 61. https://doi.org/10.1016/0022-0728(89)85162-9
  47. Ianniello, R.; Schmidt, V. M.; Stimming, U.; Stumper, J.; Wallu, A. Electrochim. Acta 1994, 39, 1863. https://doi.org/10.1016/0013-4686(94)85176-X

Cited by

  1. Nanoparticles in a Mesoporous Core/Shell Silica Microsphere and Their Catalytic Activity vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3712
  2. Pt–Ru electrocatalysts for fuel cells: developments in the last decade vol.21, pp.3, 2017, https://doi.org/10.1007/s10008-016-3382-5
  3. DFT studies on the interaction of PtxRuyMz (M = Fe, Ni, Cu, Mo, Sn, x + y + z = 4, x ≥ 1, y ≥ 1) alloy clusters with O2 vol.113, pp.8, 2010, https://doi.org/10.1080/00268976.2014.983573
  4. PT‐BASED Intermetallic Nanocatalysts for Promoting the Oxygen Reduction Reaction vol.42, pp.5, 2010, https://doi.org/10.1002/bkcs.12274