References
- Chen, L. C.; Ho, Y. C.; Guo, W. S. Electrochim. Acta 2009, 54, 3884. https://doi.org/10.1016/j.electacta.2009.02.001
- Hamal, D. B.; Klabunde. K. J. J. Colloid Interf. Sci. 2007, 311, 514. https://doi.org/10.1016/j.jcis.2007.03.001
- Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 32, 33. https://doi.org/10.1016/j.progsolidstchem.2004.08.001
- Wang, W. D.; Serp, P.; Kalck, P. J. Mole. Catal. A Chem. 2005, 235, 194. https://doi.org/10.1016/j.molcata.2005.02.027
- Neren O¨ kte, A.; O¨ zge, Y. Appl. Catal. B: Environ. 2008, 85, 92. https://doi.org/10.1016/j.apcatb.2008.07.025
- Bhattachayya, A.; Kawi, S.; Ray, M. B. Catal. Today 2004, 98, 431. https://doi.org/10.1016/j.cattod.2004.08.010
- Yoneyama, H.; Torimoto, T. Catal. Today 2000, 58, 133. https://doi.org/10.1016/S0920-5861(00)00248-0
- Fu, P. F.; Luan, Y.; Dai, X. G. J. Mole. Catal. A: Chem. 2004, 221, 81. https://doi.org/10.1016/j.molcata.2004.06.018
- Oh, W. C.; Chen, M. L. Bull. Korean Chem. Soc. 2008, 29, 159. https://doi.org/10.5012/bkcs.2008.29.1.159
- Oh, W. C.; Jung, A. R.; Ko, W. B. J. Ind. Eng. Chem. 2007, 13, 1208.
- Yang, S.; Zhu, W.; Li, X. Catal. Commun. 2007, 8, 2059. https://doi.org/10.1016/j.catcom.2007.04.015
- Zhang, F. J.; Chen, M. L.; Oh, W. C. Environ. Eng. Res. 2009, 14, 32. https://doi.org/10.4491/eer.2009.14.1.032
- Zhang, F. J.; Chen, M. L.; Oh, W. C. Mater. Res. Soc. Korea 2008, 18, 583. https://doi.org/10.3740/MRSK.2008.18.11.583
- Kongkanand, A.; Kamat, P. V. ACS. Nano. 2007, 1, 13. https://doi.org/10.1021/nn700036f
- Choi, W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98, 13669. https://doi.org/10.1021/j100102a038
- Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341. https://doi.org/10.1021/cr00017a016
- Xu, A.; Gao, W. Y.; Liu, H. Q. J. Catal. 2002, 207, 151. https://doi.org/10.1006/jcat.2002.3539
- Jing, L. Q.; Sun, X. I.; Xin, B. F. J. Solid State Chem. 2004, 177, 3375. https://doi.org/10.1016/j.jssc.2004.05.064
- Shankar, M. V.; Cheralthan, K. K.; Arabindoo, B. J. Mole. Catal. 2004, 223, 195. https://doi.org/10.1016/j.molcata.2004.03.059
- Shankar, M. V.; Anandan, S.; Venkatachalam, N. Chemosphere 2006, 63, 1014. https://doi.org/10.1016/j.chemosphere.2005.08.041
- Zhang, Y. H.; Zhang, H. X.; Xu, Y. X. J. Mater. Chem. 2003, 13, 2261. https://doi.org/10.1039/b305538h
- Liang, C. H.; Li, F. B.; Liu, C. S. Dyes Pigments 2008, 76, 477. https://doi.org/10.1016/j.dyepig.2006.10.006
- Lin, J.; Yu, J. C. J. Photochem. Photobiol. A: Chem. 1998, 116, 63. https://doi.org/10.1016/S1010-6030(98)00289-5
- Ismail, A. A. Appl. Catal. B: Environ. 2005, 58, 115. https://doi.org/10.1016/j.apcatb.2004.11.022
- Inagaki, M.; Hirose, Y.; Matsunaga, T. Carbon 2003, 41, 2619. https://doi.org/10.1016/S0008-6223(03)00340-3
- Oh, W. C.; Chen, M. L. J. Ceram. Process Res. 2008, 9, 100.
- Zhang, X. W.; Zhou, M. H.; Lei, L. C. Carbon 2005, 43, 1700. https://doi.org/10.1016/j.carbon.2005.02.013
- Christensen, P. A.; Curtis, T. P.; Egerton, T. A. Appl. Catal. B: Environ. 2003, 41, 371. https://doi.org/10.1016/S0926-3373(02)00172-8
- Ugarte, U.; Chatelain, A.; De Heer, W. A. Science 1996, 274, 1897. https://doi.org/10.1126/science.274.5294.1897
- Ajayan, P. M.; Iijima, S. Nature 1996, 361, 333. https://doi.org/10.1038/361333a0
Cited by
- Effect of Pt treated fullerene/TiO2 on the photocatalytic degradation of MO under visible light vol.21, pp.21, 2011, https://doi.org/10.1039/c1jm10301f
- Composites and Their Photocatalytic Activity Under Visible Light vol.48, pp.3, 2011, https://doi.org/10.4191/KCERS.2011.48.3.211
- Comparison of the photonic effects of Mn-CNT/TiO2 composites modified by different oxidants vol.52, pp.5, 2011, https://doi.org/10.1134/S002315841105020X
- Lanthanide modified semiconductor photocatalysts vol.2, pp.4, 2012, https://doi.org/10.1039/c2cy00552b
- Supported on AC Under Visible Light Irradiation vol.22, pp.2, 2012, https://doi.org/10.3740/MRSK.2012.22.2.91
- /Carbon Nanotube Nanocomposites for Environmental Applications: An Overview and Recent Developments vol.22, pp.5, 2014, https://doi.org/10.1080/1536383X.2012.690458
- . Application for the Photocatalytic Degradation of Formic Acid vol.44, pp.12, 2015, https://doi.org/10.1246/cl.150762
- Modeling and Optimization of BT and DBT Photooxidation over Multiwall Carbon Nanotube-Titania Composite by Response Surface Methodology vol.2018, pp.1687-529X, 2018, https://doi.org/10.1155/2018/9716383
- Catalytic performance of ZnFe2O4 nanoparticles prepared from the [ZnFe2O(CH3COO)6(H2O)3]·2H2O complex under microwave irradiation vol.45, pp.2, 2019, https://doi.org/10.1007/s11164-018-3607-6
- Photodegradation of MB on Fe/CNT-TiO2 Composite Photocatalysts Under Visible Light vol.20, pp.5, 2010, https://doi.org/10.3740/mrsk.2010.20.5.246
- Sonocatalytic degradation of Rhodamine B in the presence of C60 and CdS coupled TiO2 particles vol.19, pp.1, 2010, https://doi.org/10.1016/j.ultsonch.2011.05.006
- Synthesis and structural characterization of magnetic cadmium sulfide-cobalt ferrite nanocomposite, and study of its activity for dyes degradation under ultrasound vol.1123, pp.None, 2016, https://doi.org/10.1016/j.molstruc.2016.06.032
- Ultrasound-assisted degradation of organic dyes over magnetic CoFe2O4@ZnS core-shell nanocomposite vol.37, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2017.01.019
- Sonocatalytic performance of magnetically separable CuS/CoFe2O4 nanohybrid for efficient degradation of organic dyes vol.44, pp.None, 2010, https://doi.org/10.1016/j.ultsonch.2018.02.051
- A magnetically separable plate-like cadmium titanate-copper ferrite nanocomposite with enhanced visible-light photocatalytic degradation performance for organic contaminants vol.9, pp.27, 2010, https://doi.org/10.1039/c9ra01968e
- Recent development and future prospects of TIO 2 photocatalysis vol.68, pp.5, 2010, https://doi.org/10.1002/jccs.202000465