DOI QR코드

DOI QR Code

Synthesis and Aminolysis of N,N-Diethyl Carbamic Ester of HOBt Derivatives

  • Khattab, Sherine Nabil (Department of Chemistry, Faculty of Science, University of Alexandria) ;
  • Hassan, Seham Yassin (Department of Chemistry, Faculty of Science, University of Alexandria) ;
  • Hamed, Ezzat Awad (Department of Chemistry, Faculty of Science, University of Alexandria) ;
  • Albericio, Fernando (Institute for Research in Biomedicine, Barcelona Science Park, University of Barcelona) ;
  • El-Faham, Ayman (Department of Chemistry, Faculty of Science, University of Alexandria)
  • Published : 2010.01.20

Abstract

The reaction of N,N-diethyl carbamates of 1H-[1,2,3]triazolo[4,5-b]pyridin-1-ol (4-HOAt) 7, 3H-[1,2,3]triazolo[4,5-b]pyridin-3-ol (7-HOAt) 8, 1H-benzo[d][1,2,3]triazol-1-ol (HOBt) 9, 6-chloro-1H-benzo[d][1,2,3]triazol-1-ol (Cl-HOBt) 10, 6-(trifluoromethyl)-1H-benzo[d][1,2,3]triazol-1-ol ($CF_3$-HOBt) 11, and 6-nitro-1H-benzo[d][1,2,3]triazol-1-ol ($NO_2$-HOBt) 12 with morpholine and piperidine in $CH_3CN$ underwent acyl nucleophilic substitution to give the corresponding carboxamide derivatives. The reactants and products were identified by elemental analysis, IR and NMR. We measured the kinetics of these reactions spectrophotometrically in $CH_3CN$ at a range of temperatures. The rates of morpholinolysis and piperidinolysis were found to fit the Hammett equation and correlated with $\sigma$-Hammett values. The values were 1.44 - 1.21 for morpholinolysis and 1.95 - 1.72 for piperidinolysis depending on the temperature. The $Br{\phi}$nsted-type plot was linear with a $\beta_lg = -0.49 \pm 0.02$ and $-0.67 \pm 0.03$. The kinetic data and structure-reactivity relationships indicate that the reaction of 9-12 with amines proceeds by a concerted mechanism. The deviation from linearity of the correlation ${\Delta}H^#$ vs. ${\Delta}S^#$ and plot of $logk_{pip}$ vs. $logk_{morph}$ and $Br{\phi}$nsted-type correlation indicate that the reactions of amines with carbamates 7 and 8 is attributed to the electronic nature of their leaving groups.

Keywords

References

  1. Jencks, W. P. Catalysis in Chemistry and Enzymology; Mc Graw-Hill: London, 1969; p 463-553.
  2. Baxter, N. J.; Rigoreau, L. J. M.; Laws, A. P.; Page, M. I. J. Am. Chem. Soc. 2000, 122, 3375-3385. https://doi.org/10.1021/ja994293b
  3. Adalsteinsson, H.; Bruice, T. C. J. Am. Chem. Soc. 1998, 120, 3440-3447. https://doi.org/10.1021/ja972162+
  4. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. b) Castro, E. A.; Cubillos, M.; Santos, J. G.; Tellez, J. J. Org. Chem. 1997, 62, 2512-2517. https://doi.org/10.1021/jo961921o
  5. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 1996, 61, 3501-3505. https://doi.org/10.1021/jo951726u
  6. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  7. Um, I. H.; Min, J. S.; Lee, H. W. Can. J. Chem. 1999, 77, 659-666. https://doi.org/10.1139/cjc-77-5-6-659
  8. Williams, A. Acc. Chem. Res. 1989, 22, 387-392. https://doi.org/10.1021/ar00167a003
  9. Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362-6368. https://doi.org/10.1021/ja00255a021
  10. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890-1895. https://doi.org/10.1021/ja00214a037
  11. Deacon, T.; Farra, C. R.; Sikkel, B. J.; Williams, A. J. Am. Chem. Soc. 1978, 100, 2525-2534. https://doi.org/10.1021/ja00476a042
  12. Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am. Chem. Soc. 1993, 115, 1650-1656. https://doi.org/10.1021/ja00058a006
  13. Hess, R. A.; Hengge, A. C.; Cleland, W. W. J. Am. Chem. Soc. 1997, 119, 6980-6983. https://doi.org/10.1021/ja970648k
  14. Hengge, A. C.; Hess, R. A. J. Am. Chem. Soc. 1994, 116, 11256-11263. https://doi.org/10.1021/ja00104a007
  15. Guthrie, J. P. J. Am. Chem. Soc. 1996, 118, 12878. https://doi.org/10.1021/ja961860b
  16. Guthrie, J. P. J. Am. Chem. Soc. 1991, 113, 3941-3949. https://doi.org/10.1021/ja00010a040
  17. Pregel, M. J.; Dunn, E. J.; Buncel, E. J. Am. Chem. Soc. 1991, 113, 3545-3550. https://doi.org/10.1021/ja00009a049
  18. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971-975. https://doi.org/10.1021/ja00185a029
  19. Tarkka, R. M.; Buncel, E. J. Am. Chem. Soc. 1995, 117, 1503-1507. https://doi.org/10.1021/ja00110a006
  20. Okuyama, T.; Takano, H. J. Org. Chem. 1994, 59, 472-476. https://doi.org/10.1021/jo00081a031
  21. Okuyama, T.; Lee, J. P.; Ohnish, K. J. Am. Chem. Soc. 1994, 116, 6480-6481. https://doi.org/10.1021/ja00093a077
  22. Bender, M. Chem. Rev. 1960, 60, 53-113. https://doi.org/10.1021/cr60203a005
  23. Um, I. H.; Kim, M. J.; Lee, H. W. Chem. Commun. 2000, 2165-2166.
  24. Capon, B.; Ghosh, A. K.; Grieve, D. M. A. Acc. Chem. Res. 1981, 14, 306-312. https://doi.org/10.1021/ar00070a003
  25. Perkins, C. W.; Martin, J. C. J. Am. Chem. Soc. 1985, 107, 3209-3218. https://doi.org/10.1021/ja00297a029
  26. McClelland, R. A.; Santry, L. J. Acc. Chem. Res. 1983, 16, 394-399. https://doi.org/10.1021/ar00095a001
  27. Um, I. H.; Park, Y. M.; Shin, E. H. Bull. Korean Chem. Soc. 1999, 20, 392-394.
  28. Shawali, A. S.; Harhash, A.; Hassanee, H. M.; Alkaaabi, S. S. J. Org. Chem. 1986, 51, 3498. https://doi.org/10.1021/jo00368a020
  29. Menger, F. M.; Glass, L. E. J. Org. Chem. 1974, 39, 2469-2470. https://doi.org/10.1021/jo00930a052
  30. Oh, H. K.;. Oh, J. Y. Bull. Korean Chem. Soc. 2006, 27, 143-146. https://doi.org/10.5012/bkcs.2006.27.1.143
  31. Furuya, Y.; Goto, S.; Itoho, K.; Urasaki, I.; Morita, A. Tetrahedron 1968, 24, 2367-2375. https://doi.org/10.1016/0040-4020(68)88138-4
  32. Lee, I.; Sung, D. D. Curr. Org. Chem. 2004, 8, 557-567. https://doi.org/10.2174/1385272043370753
  33. Oh, H. K.; Kim, S. K.; Lee, I. Bull. Korean Chem. Soc. 1999, 20, 1017-1020. https://doi.org/10.1007/BF02706930
  34. Oh, H. K.; Oh, J. Y. Bull. Korean Chem. Soc. 2006, 27, 143-146. https://doi.org/10.5012/bkcs.2006.27.1.143
  35. Menger, F. M.; Smith J. H. J. Am. Chem. Soc. 1970, 92, 2824-2829.
  36. Wentworth, P.; Datta, A.; Smith, S.; Marshall, A.; Partidge, L. J.; Blackburn, G. M. J. Am. Chem. Soc. 1997, 119, 2315-2316. https://doi.org/10.1021/ja961625t
  37. Boucher, G.; Said, B.; Ostler, E. L.; Resmin, M.; Brocklehurst, K.; Gallacher, G. Biochem. J. 2007, 401, 721-726. https://doi.org/10.1042/BJ20060551
  38. Um, I. H.; Lee, E.-J.; Jeon, S. E. Bull. Korean Chem. Soc. 2001, 22, 1301-1302.
  39. Khattab, Sh. N.; Hassan, S. Y.; Hamed, E. A.; El-Faham, A. J. Chem. Res. 2007, 247-251.
  40. Um, I. H.; Lee, E.-J.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985. https://doi.org/10.1039/b607194e
  41. Um, I. H.; Jeon, S.-E.; Seok, J.-A. Chem. Eur. J. 2006, 12, 1237-1243. https://doi.org/10.1002/chem.200500647
  42. Jeong, K. S.; Oh, H. K. Bull. Korean Chem. Soc. 2007, 28, 485-488. https://doi.org/10.5012/bkcs.2007.28.3.485
  43. Um, I. H.; Akhtar, K. Bull. Korean Chem. Soc. 2008, 29, 772-776. https://doi.org/10.5012/bkcs.2008.29.4.772
  44. Um, I. H.; Kim, K.-H.; Park, H.-R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  45. Um, I. H.; Han, H.-J.; Baek, M.-H.; Bae, S.-Y. J. Org. Chem. 2004, 69, 6365-6370. https://doi.org/10.1021/jo0492160
  46. Um, I. H.; Lee, E.-J.; Ko, S.-H.; Bae, S.-K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  47. Um, I. H.; Park, H.-R.; Kim, E.-Y. Bull. Korean Chem. Soc. 2003, 24, 1251-1255. https://doi.org/10.5012/bkcs.2003.24.9.1251
  48. Um, I. H.; Park, Y.-M. Bull. Korean Chem. Soc. 2008, 29, 575-579. https://doi.org/10.5012/bkcs.2008.29.3.575
  49. Albericio, F.; Chinchilla, R.; Dodsworth, D.; Nájera, C. Org. Prep. & Proc. Int. 2001, 33, 203-303. https://doi.org/10.1080/00304940109356592
  50. Johnson, C. D. The Hammett Equation; Cambridge University press: U. V., 1973.
  51. Spillane W. J.; McGrathm, P.; Brack, C.; O'Byrne, J. Org. Chem. 2001, 66, 6313-6316. https://doi.org/10.1021/jo015691b
  52. Um, I. H.; Lee, E. J.; Jeon, S. E. J. Phys. Org. Chem. 2002, 15, 561-565. https://doi.org/10.1002/poc.483
  53. Fathalla, M. F.; Khattab, Sh. N. unpublished data.
  54. Chantooni, M. K., Jr.; Kolthoff, I. M. J. Am. Chem. Soc. 1970, 92, 7025-7030. https://doi.org/10.1021/ja00727a003
  55. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 9285-9288. https://doi.org/10.1021/jo0484676

Cited by

  1. Aminolysis of 1-(1-Hydroxybenzotriazolyl)-2,4-dinitrobenzene and 2-(1-Hydroxybenzotriazolyl)-5-nitropyridine vol.02, pp.03, 2012, https://doi.org/10.4236/ojpc.2012.23021
  2. Practical Synthesis of A Macrocyclic HCV Protease Inhibitor: A High-Yielding Macrolactam Formation vol.18, pp.3, 2014, https://doi.org/10.1021/op400331j
  3. Sulfonate Esters of 1-Hydroxypyridin-2(1H)-one and Ethyl 2-Cyano-2-(hydroxyimino)acetate (Oxyma) as Effective Peptide Coupling Reagents to Replace 1-Hydroxybenzotriazole and 1-Hydroxy-7-azabenzotriazole vol.58, pp.4, 2010, https://doi.org/10.1248/cpb.58.501
  4. Synthesis and Aminolysis of 2,4-Dinitrophenyl and 5-Nitropyridine N-Hydroxy Oxime Derivatives vol.84, pp.6, 2011, https://doi.org/10.1246/bcsj.20110015
  5. Experimental and theoretical approaches to the study of the reactivity and mechanism of the substitution of phenyl 1‐(2,4‐dinitronaphthyl) ether with anilines derivatives vol.52, pp.5, 2010, https://doi.org/10.1002/kin.21354
  6. Understanding the reaction mechanism of the regioselective piperidinolysis of aryl 1-(2,4-dinitronaphthyl) ethers in DMSO: Kinetic and DFT studies vol.46, pp.None, 2010, https://doi.org/10.1177/14686783211027446
  7. Novel versatile synthesis method for amides, carbamates and ureas employing a Grignard base, an amine and an ester vol.4, pp.None, 2022, https://doi.org/10.1016/j.rechem.2021.100253