Clinical Applications of Chromosomal Microarray Analysis

염색체 Microarray 검사의 임상적 적용

  • Seo, Eul-Ju (Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center)
  • 서을주 (울산의대 서울아산병원 진단검사의학과)
  • Received : 2010.12.03
  • Accepted : 2010.12.24
  • Published : 2010.12.01

Abstract

Chromosomal microarray analysis (CMA) enables the genome-wide detection of submicroscopic chromosomal imbalances with greater precision and accuracy. In most other countries, CMA is now a commonly used clinical diagnostic test, replacing conventional cytogenetics or targeted detection such as FISH or PCR-based methods. Recently, some consensus statements have proposed utilization of CMA as a first-line test in patients with multiple congenital anomalies not specific to a well-delineated genetic syndrome, developmental delay/intellectual disability, or autism spectrum disorders. CMA can be used as an adjunct to conventional cytogenetics to identify chromosomal abnormalities observed in G-banding analysis in constitutional or acquired cases, leading to a more accurate and comprehensive assessment of chromosomal aberrations. Although CMA has distinct advantages, there are several limitations, including its inability to detect balanced chromosomal rearrangements and low-level mosaicism, its interpretation of copy number variants of uncertain clinical significance, and significantly higher costs. For these reasons, CMA is not currently a replacement for conventional cytogenetics in prenatal diagnosis. In clinical applications of CMA, knowledge and experience based on genetics and cytogenetics are required for data analysis and interpretation, and appropriate follow-up with genetic counseling is recommended.

염색체 microarray 검사는 유전체 전체를 한번에 검색하여 초현미경적인 염색체 이상을 매우 정밀하고 정확하게 검출할 수 있다. 외국에서는 현재 자주 활용되는 임상 진단 검사로 자리잡았고, 염색체 검사 또는 표적 부위를 검출하는 FISH 검사나 PCR 기반의 분자유전학적 방법을 대체하고 있다. 최근 발표된 consensus 들은 염색체 microarray 검사를 비특이적인 다발성 기형, 발달지연 또는 정신지체, 자폐증상질환의 환자에서는 염색체 검사보다 먼저 시행할 수 있는 검사로 제안하였다. 염색체 microarray 검사는 핵형 분석에서 검출된 염색체 불균형을 검증하기 위해 염색체 검사에 보조적으로 활용할 수 있고, 염색체 이상에 대한 보다 정확하고 종합적인 분석이 가능하다. 그러나 염색체 microarray 검사는 균형재배열의 염색체 이상과 low-level 모자이시즘을 검출하기 어렵고, 임상적 중요성이 불명확한 CNV에 대한 해석과 검사비용이 고가라는 한계점이 있다. 이러한 이유로 인해 현재로서는 염색체 microarray 검사가 산전 진단 목적으로는 고식적인 염색체 검사를 대신할 수는 없다는 의견이다. 임상검사실에서 염색체 microarray 검사 시행 시, 유전학적 및 세포유전학적 지식과 경험이 결과 분석과 해석 과정에서 요구되며, 적절한 검증 과정 단계와 유전상담이 동반되어야 한다.

Keywords

References

  1. Tjio JH, Levan A. The chromosome number of man. Hereditas 1956;42:1-6.
  2. Lejeune JM, Gautier M, Turpin R. Etude des chromosomes somatiques de neuf enfants mongoliens. CR Acad Sci Paris 1958;248:1721-2.
  3. Speicher MR, Carter NP. The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 2005;6:782-92. https://doi.org/10.1038/nrg1692
  4. Schinzel A. Microdeletion syndromes, balanced translocations, and gene mapping. J Med Genet 1988;25:454-62. https://doi.org/10.1136/jmg.25.7.454
  5. Cho EH, Park BY, Cho JH, Kang YS. Comparing two diagnostic laboratory tests for several microdeletions causing mental retardation syndromes: multiplex ligation-dependent amplification vs fluorescent in situ hybridization. Korean J Lab Med 2009;29:71-6. https://doi.org/10.3343/kjlm.2009.29.1.71
  6. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 1992;258:818-21. https://doi.org/10.1126/science.1359641
  7. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H, et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997;20:399-407. https://doi.org/10.1002/(SICI)1098-2264(199712)20:4<399::AID-GCC12>3.0.CO;2-I
  8. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998;20:207-11. https://doi.org/10.1038/2524
  9. Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet 2006;7:85-97.
  10. Carter NP. Methods and strategies for analyzing copy number variation using DNA microarrays. Nat Genet 2007;39:S16-21. https://doi.org/10.1038/ng2028
  11. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, et al. Detection of large-scale variation in the human genome. Nat Genet 2004;36:949-51. https://doi.org/10.1038/ng1416
  12. Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B, Coe BP, et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 2004;36:299-303. https://doi.org/10.1038/ng1307
  13. Fiegler H, Redon R, Andrews D, Scott C, Andrews R, Carder C, et al. Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Res 2006;16:1566-74. https://doi.org/10.1101/gr.5630906
  14. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, et al. Global variation in copy number in the human genome. Nature 2006;444:444-54. https://doi.org/10.1038/nature05329
  15. Wong KK, deLeeuw RJ, Dosanjh NS, Kimm LR, Cheng Z, Horsman DE, et al. A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 2007;80:91-104. https://doi.org/10.1086/510560
  16. Greshock J, Feng B, Nogueira C, Ivanova E, Perna I, Nathanson K, et al. A comparison of DNA copy number profiling platforms. Cancer Res 2007;67:10173-80. https://doi.org/10.1158/0008-5472.CAN-07-2102
  17. McCarroll SA, Hadnott TN, Perry GH, Sabeti PC, Zody MC, Barrett JC, et al. Common deletion polymorphisms in the human genome. Nat Genet 2006;38:86-92. https://doi.org/10.1038/ng1696
  18. Kamath BM, Thiel BD, Gai X, Conlin LK, Munoz PS, Glessner J, et al. SNP array mapping of chromosome 20p deletions: genotypes, phenotypes, and copy number variation. Hum Mutat 2009;30:371-8. https://doi.org/10.1002/humu.20863
  19. Talseth-Palmer BA, Bowden NA, Meldrum C, Nicholl J, Thompson E, Friend K, et al. A 1q44 deletion, paternal UPD of chromosome 2 and a deletion due to a complex translocation detected in children with abnormal phenotypes using new SNP array technology. Cytogenet Genome Res 2009;124:94-101. https://doi.org/10.1159/000200093
  20. Manning M, Hudgins L. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med 2010;12:742-5. https://doi.org/10.1097/GIM.0b013e3181f8baad
  21. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 2010;86:749-64. https://doi.org/10.1016/j.ajhg.2010.04.006
  22. Shaffer LG, Beaudet AL, Brothman AR, Hirsch B, Levy B, Martin CL, et al. Microarray analysis for constitutional cytogenetic abnormalities. Genet Med 2007;9:654-62. https://doi.org/10.1097/GIM.0b013e31814ce3d9
  23. Fan YS, Jayakar P, Zhu H, Barbouth D, Sacharow S, Morales A, et al. Detection of pathogenic gene copy number variations in patients with mental retardation by genomewide oligonucleotide array comparative genomic hybridization. Hum Mutat 2007;28:1124-32. https://doi.org/10.1002/humu.20581
  24. Pickering DL, Eudy JD, Olney AH, Dave BJ, Golden D, Stevens J, et al. Array-based comparative genomic hybridization analysis of 1176 consecutive clinical genetics investigations. Genet Med 2008;10:262-6. https://doi.org/10.1097/GIM.0b013e31816b64ad
  25. Shaffer LG, Bejjani BA, Torchia B, Kirkpatrick S, Coppinger J, Ballif BC. The identification of micro-deletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. Am J Med Genet C Semin Med Genet 2007;145C:335-45. https://doi.org/10.1002/ajmg.c.30152
  26. Seo EJ, Jun KR, Yoo HW, Yoo HK, Lee JO. Identification of a novel deletion region in 3q29 micro-deletion syndrome by oligonucleotide array comparative genomic hybridization. Korean J Lab Med 2010;30:70-5. https://doi.org/10.3343/kjlm.2010.30.1.70
  27. Choi JH, Kang M, Kim GH, Hong M, Jin HY, Lee BH, et al. Clinical and Functional Characteristics of a Novel Heterozygous Mutation of the IGF1R Gene and IGF1R Haploinsufficiency due to Terminal 15q26.2->qter Deletion in Patients with Intrauterine Growth Retardation and Postnatal Catch-Up Growth Failure. J Clin Endocrinol Metab 2010. https://doi.org/10.1210/jc.2010-1789
  28. Tiu RV, Gondek LP, O'Keefe CL, Huh J, Sekeres MA, Elson P, et al. New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. J Clin Oncol 2009;27:5219-26. https://doi.org/10.1200/JCO.2009.21.9840
  29. Shaffer LG, Bui TH. Molecular cytogenetic and rapid aneuploidy detection methods in prenatal diagnosis. Am J Med Genet C Semin Med Genet 2007;145C:87-98. https://doi.org/10.1002/ajmg.c.30114
  30. Maya I, Davidov B, Gershovitz L, Zalzstein Y, Taub E, Coppinger J, et al. Diagnostic utility of array-based comparative genomic hybridization (aCGH) in a prenatal setting. Prenat Diagn 2010;30:1131-7. https://doi.org/10.1002/pd.2626
  31. ACOG Committee Opinion No. 446: array comparative genomic hybridization in prenatal diagnosis. Obstet Gynecol 2009;114:1161-3. https://doi.org/10.1097/AOG.0b013e3181c33cad
  32. Park H, Kim JI, Ju YS, Gokcumen O, Mills RE, Kim S, et al. Discovery of common Asian copy number variants using integrated high-resolution array CGH and massively parallel DNA sequencing. Nat Genet 2010;42:400-5. https://doi.org/10.1038/ng.555
  33. Lee C, Iafrate AJ, Brothman AR. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. Nat Genet 2007;39:S48-54. https://doi.org/10.1038/ng2092