DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Pyridinolyses of Dimethyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile

  • Received : 2010.10.05
  • Accepted : 2010.10.18
  • Published : 2010.12.20

Abstract

Keywords

References

  1. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem.2000, 65, 12. https://doi.org/10.1021/jo990671j
  2. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215. https://doi.org/10.1021/jo0162742
  3. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135. https://doi.org/10.5012/bkcs.2003.24.8.1135
  4. Hoque, M. E. U.;Dey, N. K.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 1797. https://doi.org/10.5012/bkcs.2007.28.10.1797
  5. Adhikary, K. K.; Lumbiny,B. J.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29,851. https://doi.org/10.5012/bkcs.2008.29.4.851
  6. Lumbiny, B. J.; Adhikary, K. K.; Lee, B. S.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 1769. https://doi.org/10.5012/bkcs.2008.29.9.1769
  7. Dey, N. K.; Hoque, M.E. U.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. 2010, 23, 1022. https://doi.org/10.1002/poc.1709
  8. Guha, A. K.; Kim, C. K.; Lee, H. W. J. Phys. Org. Chem. DOI.10.1002/poc.1788. Anilinolysis
  9. Guha, A. K.; Lee, H. W.; Lee,I. J. Chem. Soc., Perkin Trans. 2 1999, 765.
  10. Lee, H. W.; Guha,A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632. https://doi.org/10.1002/kin.10081
  11. Hoque, M. E.U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493. https://doi.org/10.1021/jo0700934
  12. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 936. https://doi.org/10.5012/bkcs.2007.28.6.936
  13. Dey, N. K.; Han, I. S.; Lee,H. W. Bull. Korean Chem. Soc. 2007, 28, 2003. https://doi.org/10.5012/bkcs.2007.28.11.2003
  14. Hoque, M. E.U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
  15. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.;Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
  16. Lumbiny,B. J.; Lee, H. W. Bull. Korean Chem. Soc. 2008, 29, 2065. https://doi.org/10.5012/bkcs.2008.29.10.2065
  17. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425. https://doi.org/10.1002/poc.1478
  18. Dey, N. K.; Kim, C. K.; Lee,H. W. Bull. Korean Chem. Soc. 2009, 30, 975. https://doi.org/10.5012/bkcs.2009.30.4.975
  19. Hoque, M. E.U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b903148k
  20. Dey, N. K.; Lee, H. W. Bull. Korean Chem. Soc. 2010, 31, 1403. https://doi.org/10.5012/bkcs.2010.31.5.1403
  21. Dey, N. K.; Kim, C. K.; Lee, H. W. Org. Biomol. Chem. DOI. 10.1039/c0ob00517g. Theoretical
  22. Lee,I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.;Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162. https://doi.org/10.1021/ja001814i
  23. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim,Y. B. J. Phys. Chem. B 1999, 103, 7302. https://doi.org/10.1021/jp991115w
  24. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 45. https://doi.org/10.1002/9780470171837.ch2
  25. Hondal, R. J.; Bruzik, K. S.; Zhao, Z.; Tsai, M. D. J. Am. Chem. Soc. 1997, 119, 5477. https://doi.org/10.1021/ja964217y
  26. Holtz, K. M.; Catrina, I. E.; Hengge, A.C.; Kantrowitz, E. R. Biochemistry 2000, 39, 9451. https://doi.org/10.1021/bi000899x
  27. Omakor,J. E.; Onyido, I.; vanLoon, G. W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324.
  28. Gregersen, B. A.; Lopez, X.; York, D. M. J. Am. Chem. Soc. 2003, 125, 7178. https://doi.org/10.1021/ja035167h
  29. Onyido, I.; Swierczek,K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703.324.
  30. Liu, Y.; Gregersen, B. A.; Hengge, A. C.; York, D. M. Biochemistry2006, 45, 10043. https://doi.org/10.1021/bi060869f
  31. Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4.
  32. Charton, M. Prog. Phys. Org. Chem. 1987, 16, 287. https://doi.org/10.1002/9780470171950.ch6
  33. Taft, R. W. Steric Effect in Organic Chemistry, ed. Newman, M. S.; Wiley: New York, 1956; Chapter 3.
  34. Jencks, W. P.; Brant, S. R.; Gandler, J. R.; Fendrich, G.; Nakamura,C. J. Am. Chem. Soc. 1982, 104, 7045. https://doi.org/10.1021/ja00389a027
  35. Onyido, I.; Swierczek,K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005,127, 7703. https://doi.org/10.1021/ja0501565
  36. Lee, I.; Lee, W. H.; Lee, H. W.; Bentley, T. W. J. Chem. Soc., Perkin Trans. 2 1993, 141.
  37. Chang, S.; Koh, H. J.; Lee, B. S.; Lee, I. J. Org. Chem. 1995, 60,7760. https://doi.org/10.1021/jo00129a016
  38. Jencks, W. P. Chem. Rev. 1985, 85, 511. https://doi.org/10.1021/cr00070a001
  39. Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301. https://doi.org/10.1021/ar00140a006
  40. Bernasconi,C. F. Adv. Phys. Org. Chem. 1992, 27, 119.
  41. Gilliom, R. D. Introduction to Physical Organic Chemistry; Addison-Wesley; Philippines, 1970; pp 167-169.

Cited by

  1. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3880
  2. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1625
  3. Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1939
  4. Kinetics and Mechanism of the Pyridinolysis of Methyl Phenyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1945
  5. Pyridinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.2109
  6. Kinetics and Mechanism of the Pyridinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2805
  7. Pyridinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3505
  8. Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.270
  9. Pyridinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.309
  10. Pyridinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.325
  11. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
  12. Kinetics and Mechanism of the Pyridinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1047
  13. Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile vol.32, pp.11, 2010, https://doi.org/10.5012/bkcs.2011.32.11.3947
  14. Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
  15. Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2010, https://doi.org/10.5012/bkcs.2011.32.12.4304
  16. Kinetics and Mechanism of the Pyridinolysis of Ethylene Phosphorochloridate in Acetonitrile vol.32, pp.12, 2010, https://doi.org/10.5012/bkcs.2011.32.12.4347
  17. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2010, https://doi.org/10.5012/bkcs.2011.32.12.4387
  18. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.32, pp.12, 2010, https://doi.org/10.5012/bkcs.2011.32.12.4403
  19. Pyridinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.32, pp.2, 2010, https://doi.org/10.5012/bkcs.2011.32.2.709
  20. Theoretical Study of Phosphoryl Transfer Reactions vol.32, pp.3, 2010, https://doi.org/10.5012/bkcs.2011.32.3.889
  21. Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2010, https://doi.org/10.5012/bkcs.2011.32.6.1997
  22. Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile vol.32, pp.4, 2010, https://doi.org/10.5012/bkcs.2011.32.4.1138
  23. Kinetics and Mechanism of the Pyridinolysis of O-Aryl Methyl Phosphonochloridothioates in Acetonitrile vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1375
  24. Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.7, 2010, https://doi.org/10.5012/bkcs.2011.32.7.2306
  25. Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2339
  26. Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.8, 2010, https://doi.org/10.5012/bkcs.2011.32.8.2628
  27. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3245
  28. Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.32, pp.9, 2010, https://doi.org/10.5012/bkcs.2011.32.9.3355
  29. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3587
  30. Kinetics and Mechanism of the Pyridinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3743
  31. Pyridinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.3, 2010, https://doi.org/10.5012/bkcs.2012.33.3.1055