DOI QR코드

DOI QR Code

Synthesis of Terphenyls and Quaterphenyls via the Nickel N-Heterocyclic Carbene-Catalyzed Cross-Coupling of Neopentyl Arenesulfonates with Aryl Grignard Reagents

  • Jo, Hyun-Jong (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Kim, Chul-Bae (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Ryoo, Tae-Yong (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Ahn, Bo-Kyoung (School of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Park, Kwang-Yong (School of Chemical Engineering and Materials Science, Chung-Ang University)
  • Received : 2010.09.10
  • Accepted : 2010.10.21
  • Published : 2010.12.20

Abstract

Various terphenyl and quaterphenyl derivatives were prepared by the Ni-NHC catalyzed cross coupling of the corresponding biphenyl- and terphenyl-sulfonates with arylmagnesium bromides. The reactions proceeded rapidly via a nucleophilic aromatic substitution of the alkoxysulfonyl moieties by the aryl nucleophiles to afford high yields within just 1.5 h at room temperature in spite of the low reactivity of the sulfur electrophiles.

Keywords

References

  1. Prokopcova, H.; Kappe, C. O. Angew. Chem.,Int. Ed. 2009, 48, 2276. https://doi.org/10.1002/anie.200802842
  2. Negishi, E.; Huang, Z.; Wang, G.; Mohan, S.; Wang, C.; Hattori, H. Acc. Chem. Res. 2008, 41, 1474. https://doi.org/10.1021/ar800038e
  3. Negishi, E. Bull. Chem. Soc. Jpn. 2007, 80, 233. https://doi.org/10.1246/bcsj.80.233
  4. Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. https://doi.org/10.1021/cr0509760
  5. Martin, R.; Buchwald, S. L. Acc. Chem. Res. 2008, 41, 1461. https://doi.org/10.1021/ar800036s
  6. Fu, G. C. Acc. Chem. Res. 2008, 41, 1555. https://doi.org/10.1021/ar800148f
  7. Muller, C.; Vogt, D. Dalton Trans. 2007, 5505.
  8. Le Floch, P. Coord. Chem. Rev. 2006, 250, 627. https://doi.org/10.1016/j.ccr.2005.04.032
  9. Johnson, J. B.; Rovis, T. Angew. Chem., Int. Ed. 2008, 47, 840. https://doi.org/10.1002/anie.200700278
  10. Smith, M. B. Platinum Metals Rev. 2008, 52, 215. https://doi.org/10.1595/147106708X361493
  11. Macgregor, S. A. Chem. Soc. Rev. 2007, 36, 67. https://doi.org/10.1039/b516248n
  12. Herrmann, W. A.; Elison, M.; Fisher, M. J.; Kocher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. 1995, 34, 2371. https://doi.org/10.1002/anie.199523711
  13. Díez-Gonzalez, S.; Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612. https://doi.org/10.1021/cr900074m
  14. Marion, N.; Nolan S. P. Acc.Chem. Res. 2008, 41, 1440. https://doi.org/10.1021/ar800020y
  15. Herrmann, W. A. Angew. Chem.,Int. Ed. 2002, 41, 1290. https://doi.org/10.1002/1521-3773(20020415)41:8<1290::AID-ANIE1290>3.0.CO;2-Y
  16. Wurtz, S.; Glorius, F. Acc. Chem. Res. 2008, 41, 1523. https://doi.org/10.1021/ar8000876
  17. Praetorius, J. M.; Crudden, C. M. Dalton Trans. 2008, 4079.
  18. Díez-Gonzalez, S.; Nolan, S. P. Coord. Chem. Rev. 2007, 251, 874. https://doi.org/10.1016/j.ccr.2006.10.004
  19. Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F.J. Am. Chem. Soc. 2004, 126, 15195. https://doi.org/10.1021/ja045349r
  20. Zhang, C.; Huang, J.; Trudell, M. L.; Nolan, S. P. J. Org. Chem. 1999, 64, 3804. https://doi.org/10.1021/jo990554o
  21. Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet. Chem. 1998, 557, 93. https://doi.org/10.1016/S0022-328X(97)00736-5
  22. Altenhoff, G.; Goddard, R.; Lehmann, C. W.; Glorius, F. Angew.Chem., Int. Ed. 2003, 42, 3690. https://doi.org/10.1002/anie.200351325
  23. Viciu, M. S.; Kelly, R. A.; Stevens, E. D.; Naud, F.; Studer, M.; Nolan, S. P. Org. Lett. 2003, 5, 1479. https://doi.org/10.1021/ol034264c
  24. Selvakumar, K.; Zapf, A.; Beller, M. Org. Lett. 2002, 4, 3031. https://doi.org/10.1021/ol020103h
  25. Gstottmayr, C. W. K.; Bohm, V. P. W.; Herdtweck, E.; Grosche, M.; Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1363. https://doi.org/10.1002/1521-3773(20020415)41:8<1363::AID-ANIE1363>3.0.CO;2-G
  26. Huang, J.; Nolan, S. P. J. Am. Chem. Soc. 1999, 121, 9889. https://doi.org/10.1021/ja991703n
  27. Selim, K. B.; Matsumoto, Y.; Yamada, K.-i.; Tomioka, K. Angew. Chem., Int. Ed. 2009, 48, 8733. https://doi.org/10.1002/anie.200904676
  28. Hatakeyama, T.; Hashimoto, S; Ishizuka, K.; Nakamura, M. J. Am. Chem. Soc. 2009, 131,11949.
  29. Hartmann, C. E.; Nolan, S. P.; Cazin, C. S. J. Organometallics 2009, 28, 2915. https://doi.org/10.1021/om900072f
  30. Berding, J.; Lutz, M.; Spek, A. L.; Bouwman, E. Organometallics 2009, 28, 1845. https://doi.org/10.1021/om8010596
  31. Xi, Z.; Liu, B.; Chen, W. J. Org. Chem. 2008, 73, 3954.
  32. For a review, see: Dubbaka, S. R.; Vogel, P. Angew. Chem., Int.Ed. 2005, 44, 7674. https://doi.org/10.1002/anie.200463007
  33. Cho, C.-H.; Kim, C.-B.; Park, K. J. Comb. Chem. 2010, 12, 45. https://doi.org/10.1021/cc900099g
  34. Cho, C.-H.; Park, K. Bull. Korean Chem. Soc. 2007, 28, 1159. https://doi.org/10.5012/bkcs.2007.28.7.1159
  35. Cho, C.-H.; Park, H.; Park, M.-A.; Ryoo, T.-Y.; Lee, Y.-S.;Park, K. Eur. J. Org. Chem. 2005, 3177.
  36. Cho, C.-H.; Sun, M.;Seo, Y.-S.; Kim, C.-B.; Park, K. J. Org. Chem. 2005, 70, 1482. https://doi.org/10.1021/jo048300c
  37. Cho, C.-H.; Kim, I.-S.; Park, K. Tetrahedron 2004, 60, 4589. https://doi.org/10.1016/j.tet.2004.03.072
  38. Cho, C.-H.; Yun, H.-S.; Park, K. J. Org. Chem. 2003, 68, 3017. https://doi.org/10.1021/jo026449n
  39. Kim, C.-B.; Jo, H.; Ahn, B.-K.; Kim, C. K.; Park, K. J. Org. Chem. 2009, 74, 9566. https://doi.org/10.1021/jo902151h
  40. Liao, H.-R.; Lin, Y.-J.; Chou, Y.-M.; Luo, F.-T.; Wang, B.-C. J. Lumin. 2008, 128, 1373. https://doi.org/10.1016/j.jlumin.2008.01.006
  41. Sakai, K.-i.; Sonoyama, T.; Tsuzuki,T.; Ichikawa, M.; Tanigucji, Y. Chem. Lett. 2005, 34, 212. https://doi.org/10.1246/cl.2005.212
  42. Xie,R.; Fu, H.; Ji, X.; Yao, J. J. Photochem. Photobiol., A 2002, 147,31. https://doi.org/10.1016/S1010-6030(01)00631-1
  43. Dong, W.; Zhu, C. Mater. Lett. 2000, 45, 336. https://doi.org/10.1016/S0167-577X(00)00129-4
  44. Wallmann,I.; Schiek, M.; Koch, R.; Lutzen, A. Synthesis 2008, 15,2446.
  45. Finnerty, J. J.; Koch, R. J. Phys. Chem. A 2010, 114, 474. https://doi.org/10.1021/jp906233d
  46. Ie, Y.; Nitani, M.; Aso, Y. Chem. Lett. 2007, 36, 1326. https://doi.org/10.1246/cl.2007.1326
  47. O’Neill, L.; Byrne, H. J. J. Phys. Chem. B 2005, 109, 22082. https://doi.org/10.1021/jp0546148
  48. O’Neill, L.; Byrne, H. J. J. Phys. Chem. B 2005, 109, 12685. https://doi.org/10.1021/jp050039w
  49. Lee, I.-K.; Jung, J.-Y.; Kim, Y.-S.; Rhee, M. H.; Yun, B.-S.Bioorg. Med. Chem. 2009, 17, 4674. https://doi.org/10.1016/j.bmc.2009.04.064
  50. Bey, E.; Marchais-Oberwinkler, S.; Werth, R.; Negri, M.; Al-Soud, Y. A.; Kruchten, P.; Oster, A.; Frotscher, M.; Birk, B.; Hartmann, R. W. J. Med. Chem. 2008, 51, 6725. https://doi.org/10.1021/jm8006917
  51. Liu, J.-K. Chem. Rev. 2006, 106, 2209. https://doi.org/10.1021/cr050248c
  52. Gasowska, J. S.; Cowling, S. J.; Cockett, M. C. R.; Hird, M.;Lewis, R. A.; Raynes, E. P.; Goodby, J. W. J. Mater. Chem. 2010,20, 299. https://doi.org/10.1039/b914260f
  53. Chen, Y.; Kong, H.; Chen, L.; Qin, Z.; Zhou, W.; Li,F.; He, X. Synth. Met. 2009, 159, 2049. https://doi.org/10.1016/j.synthmet.2009.07.021
  54. Gauza, S.; Parish, A.;Wu, S.-T.; Spadlo, A.; Dąbrowski, R. Jpn. J. Appl. Phys. 2009, 48,081604. https://doi.org/10.1143/JJAP.48.081604
  55. Steinke, N.; Jahr, M.; Lehmann, M.; Baro, A.; Frey,W.; Tussetschläger, S.; Sauer, S.; Laschat, S. J. Mater. Chem. 2009,19, 645. https://doi.org/10.1039/b814536a
  56. Deeg, O.; Bauerle, P. Org. Biomol. Chem. 2003, 1,1609. https://doi.org/10.1039/b212107g
  57. Deeg, O.; Kirsch, P.; Pauluth, D.; Bauerle, P. Chem. Commun.2002, 2762.
  58. Bohm, V. P. W.; Gstottmayr, C. W. K.; Weskamp, T.; Herrmann, W. A. Angew. Chem., Int. Ed. 2001, 40, 3387. https://doi.org/10.1002/1521-3773(20010917)40:18<3387::AID-ANIE3387>3.0.CO;2-6
  59. Bohm,V. P. W.; Weskamp, T.; Gstottmayr, C. W. K.; Herrmann, W. A. Angew. Chem., Int. Ed. 2000, 39, 1602. https://doi.org/10.1002/(SICI)1521-3773(20000502)39:9<1602::AID-ANIE1602>3.0.CO;2-N
  60. Addis, D.; Enthaler, S.; Junge, K.; Wendt, B.; Beller, M. Tetrahedron Lett. 2009, 50, 3654. https://doi.org/10.1016/j.tetlet.2009.03.108
  61. Nordstrom, L. U.; Vogt, H.;Madsen, R. J. Am. Chem. Soc. 2008, 130, 17672. https://doi.org/10.1021/ja808129p
  62. Adonin, N.Y.; Babushkin, D. E.; Parmon, V. N.; Bardin, V. V.; Kostin, G. A.; Mashukov, V. I.; Frohn, H.-J. Tetrahedron 2008, 64, 5920. https://doi.org/10.1016/j.tet.2008.04.043
  63. Jia, Y.-X.; Hillgren, J. M.; Watson, E. L.; Marsden, S. P.; Kundig,E. P. Chem. Commun. 2008, 4040.
  64. Gradel, B.; Brenner, E.; Schneider, R.; Fort, Y. Tetrahedron Lett. 2001, 42, 5689. https://doi.org/10.1016/S0040-4039(01)01079-6
  65. Miguez, J. M. A.; Adrio, L. A.; Sousa-Pedrares, A.; Vila, J.M.; Hii, K. K. J. Org. Chem. 2007, 72, 7771. https://doi.org/10.1021/jo701308b
  66. Kim, C.-B.; Cho, C.-H.; Kim, C. K.; Park, K. J. Comb. Chem. 2007, 9, 1157. https://doi.org/10.1021/cc700112x

Cited by

  1. A novel Route to Synthesize p-Terphenyl from Benzene by the Catalysis of h-BN Nanoparticles vol.21, pp.4, 2011, https://doi.org/10.1007/s10904-011-9559-6
  2. ChemInform Abstract: Synthesis of Terphenyls and Quaterphenyls via the Nickel N-Heterocyclic Carbene-Catalyzed Cross-Coupling of Neopentyl Arenesulfonates with Aryl Grignard Reagents. vol.42, pp.17, 2011, https://doi.org/10.1002/chin.201117091
  3. Calculated and Experimental UV and IR Spectra of Oligo-para-phenylenes vol.35, pp.2, 2014, https://doi.org/10.5012/bkcs.2014.35.2.531
  4. Nickel N-Heterocyclic Carbene-Catalyzed C–C Bond Formation: Reactions and Mechanistic Aspects vol.5, pp.2, 2015, https://doi.org/10.1021/cs5014927
  5. Tuning the π-bridge of quadrupolar triarylborane chromophores for one- and two-photon excited fluorescence imaging of lysosomes in live cells vol.10, pp.20, 2010, https://doi.org/10.1039/c9sc00793h