DOI QR코드

DOI QR Code

Protective Metal Oxide Coatings on Zinc-sulfide-based Phosphors and their Cathodoluminescence Properties

  • Received : 2010.04.20
  • Accepted : 2010.10.19
  • Published : 2010.12.20

Abstract

We investigated the high-excitation voltage cathodoluminescence (CL) performance of blue light-emitting (ZnS:Ag,Al,Cl) and green light-emitting (ZnS:Cu,Al) phosphors coated with metal oxides ($SiO_2$, $Al_2O_3$, and MgO). Hydrolysis of the metal oxide precursors tetraethoxysilane, aluminum isopropoxide, and magnesium nitrate, with subsequent heat annealing at $400^{\circ}C$, produced $SiO_2$ nanoparticles, an $Al_2O_3$ thin film, and MgO scale-type film, respectively, on the surface of the phosphors. Effects of the phosphor surface coatings on CL intensities and aging behavior of the phosphors were assessed using an accelerating voltage of 12 kV. The MgO thick film coverage exhibited less reduction in initial CL intensity and was most effective in improving aging degradation. Phosphors treated with a low concentration of magnesium nitrate maintained their initial CL intensities without aging degradation for 2000 s. In contrast, the $SiO_2$ and the $Al_2O_3$ coverages were ineffective in improving aging degradation.

Keywords

References

  1. Holloway, P. H.; Trottier, T. A.; Sebastian, J.; Jones, S.; Zhabg, X.-M.; Bang, J.-S.; Abrams, B.; Thomes, W. J.; Kim, T.-J. J. Appl.Phys. 2000, 88, 483. https://doi.org/10.1063/1.373683
  2. Swart, H. C.; Hillie, K. T. Surf. Interface Anal. 2000, 30, 383. https://doi.org/10.1002/1096-9918(200008)30:1<383::AID-SIA779>3.0.CO;2-V
  3. Villalobos, G. R.; Bayya, S. S.; Sanghera, J. S.; Miklos, R. E.; Kung, F.; Aggarwal, I. D. J. Am. Ceram. Soc. 2000, 85, 2128. https://doi.org/10.1111/j.1151-2916.2002.tb00419.x
  4. Park, W.; Wagner, B. K.; Russell, G.; Yasuda, K.; Summers, C. J.; Do, Y. R.; Yang, H. G. J. Mater. Res. 2000, 15, 2288. https://doi.org/10.1557/JMR.2000.0328
  5. Lee, R. Y.; Kim, S. W. J. Lumin. 2001, 93, 93. https://doi.org/10.1016/S0022-2313(01)00184-3
  6. Choi, A.-W.; Hong, S.-H. J. Am. Ceram. Soc. 2008, 91, 451. https://doi.org/10.1111/j.1551-2916.2007.02120.x
  7. Kominami, H.; Nakamura, T.; Sowa, K.; Nakanishi, Y.; Hatanaka, Y.; Shimaoka, G. Appl. Surface Sci. 1997, 113/114, 519. https://doi.org/10.1016/S0169-4332(96)00836-7
  8. Chang, C.-H.; Chiou, B.-S.; Chen, K.-S.; Ho, J.-C. Appl. Surface Sci. 2005, 243, 55. https://doi.org/10.1016/j.apsusc.2004.07.069
  9. Souriau, J.-C.; Jiang, Y. D.; Penczek, J.; Paris, H. G.; Summers, C. J. Mater. Sci. Eng. B 2000, 76, 165. https://doi.org/10.1016/S0921-5107(00)00445-1
  10. Guo, C.; Chu, B.; Su, Q. Appl. Surface Sci. 2004, 225, 198. https://doi.org/10.1016/j.apsusc.2003.10.008
  11. Jung, S. M.; Jung, H. Y.; Suh, J. S. Carbon 2008, 46, 1973. https://doi.org/10.1016/j.carbon.2008.08.012
  12. Wu, J.; Wyse, M.; McClain, D.; Thomas, N.; Jiao, J. Nano Lett. 2009, 9, 595. https://doi.org/10.1021/nl802777g
  13. Pan, J.-Y.; Chen, C.-Y; Gao, Y.-L.; Zhu, C.-C. Displays 2009, 30,114. https://doi.org/10.1016/j.displa.2009.02.002
  14. Kim, K. S.; Ryu, J. H.; Lee, C. S.; Jang, J.; Park, K. C. J. Mater. Sci:Mater Electron 2009, 20, S120. https://doi.org/10.1007/s10854-007-9463-6
  15. Shiratori, Y.; Sugime, H.; Noda, S. J. Phys. Chem C 2008, 112,17974. https://doi.org/10.1021/jp807078h
  16. Stratakis, E.; Kymakis, E.; Spanakis, E.; Tzanetakis, P.; Koudoumasb, E. Phys. Chem. Chem. Phys. 2009, 11, 703. https://doi.org/10.1039/b813198h
  17. Huang, J. X.; Chen, J.; Deng, S. Z.; She, J. C.; Xua, N. S. J. Vac.Sci. Technol. B 2008, 26, 1700. https://doi.org/10.1116/1.2970144
  18. Cho, W.-S.; Lee, H.-J.; Lee, Y.-D.; Park, J.-H.; Kim, J.-K.; Lee, Y.-H.; Ju, B.-K. IEEE. Electron Device Lett. 2007, 28, 386. https://doi.org/10.1109/LED.2007.895435
  19. Jung, Y. J.; Son, G. H.; Park, J. H.; Kim, Y. W.; Berdinsky, A. S.; Yoo, J. B.; Park, C. Y. Diamond Relat. Mater. 2005, 14, 2109. https://doi.org/10.1016/j.diamond.2005.07.029
  20. Ko, K.-Y.; Huh, Y.-D.; Do, Y. R. Bull. Korean Chem. Soc. 2008,29, 822. https://doi.org/10.5012/bkcs.2008.29.4.822
  21. Jeong, J.-W.; Kim, D.-J.; Cho, K.-I.; Song, Y.-H. J. Vacuum Sci.Tech. B 2009, 27, 1097. https://doi.org/10.1116/1.3125278
  22. Kao, C.-C.; Liu, Y.-C. Mater. Chem. Phys. 2009, 115, 463. https://doi.org/10.1016/j.matchemphys.2009.01.013
  23. Demkov, A. A.; Fonseca, L. R. C.; Verret, E.; Tomfohr, J.; Sankey, O. F. Phys. Rev. B 2005, 71, 195306. https://doi.org/10.1103/PhysRevB.71.195306
  24. King, P. D. C.; Veal, T. D.; Schleife, A.; Zúñiga-Pérez, J.; Martel, B.; Jefferson, P. H.; Fuchs, F.; Muñoz-Sanjosé, V. Phys. Rev. B 2009, 79, 205205. https://doi.org/10.1103/PhysRevB.79.205205

Cited by

  1. The influence of substrate temperature on the structural and luminescent properties of as-deposited SrGa2S4:Ce3+ thin films coated with a TaSi2 thin layer vol.122, pp.3, 2016, https://doi.org/10.1007/s00339-016-9756-9
  2. Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts vol.24, pp.5, 2017, https://doi.org/10.4150/KPMI.2017.24.5.364
  3. Investigations on the low voltage cathodoluminescence stability and surface chemical behaviour using Auger and X-ray photoelectron spectroscopy on LiSrBO3:Sm3+ phosphor vol.46, pp.7, 2011, https://doi.org/10.1016/j.materresbull.2011.03.022
  4. Synthesis and luminescent properties of nanocrystalline CaYAlO4:Sm3+ phosphors vol.250, pp.2, 2013, https://doi.org/10.1002/pssb.201248464