References
- Simon, P.; Gogotsi, Y. Nat. Mater. 2008, 7, 845. https://doi.org/10.1038/nmat2297
- Miller, J. R.; Simon, P. Science 2008, 321, 651. https://doi.org/10.1126/science.1158736
- Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157,11. https://doi.org/10.1016/j.jpowsour.2006.02.065
- Kotz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483. https://doi.org/10.1016/S0013-4686(00)00354-6
- Pan, H.; Li, J. Y.; Feng, Y. P. Nanoscale Res. Lett. 2010, 5, 654. https://doi.org/10.1007/s11671-009-9508-2
- Korenblit, Y.; Rose, M.; Kockrick, E.; Borchardt, L.; Kvit, A.; Kaskel,S.; Yushin, G. ACS Nano 2010, 4, 1337. https://doi.org/10.1021/nn901825y
- Shah, R.; Zhang, X. F.; Talapatra, S. Nanotechnol. 2009, 20, 395202 https://doi.org/10.1088/0957-4484/20/39/395202
- Zhang, H.; Cao, G. P.; Yang, Y. S. J. Power Sources 2007, 172,476. https://doi.org/10.1016/j.jpowsour.2007.07.060
- Merkoci, A.; Pumera, M.; Llopis, X.; Perez, B.; Valle, M. del; Alegret,S. Trends Anal. Chem. 2005, 24, 826. https://doi.org/10.1016/j.trac.2005.03.019
- Kim, W.; Javey, A.; Tu, R.; Cao, J.; Wang, Q.; Dai, H. J. Appl. Phys. Lett. 2005, 87, 173101 https://doi.org/10.1063/1.2108127
- Kim, W.; Choi, H. C.; Shim, M.; Li, Y. M.; Wang, D. W.; Dai, H.J. Nano Lett. 2002, 2, 703. https://doi.org/10.1021/nl025602q
- Kim, H. S.; Kim, B.; Lee, B.; Chung, H.; Lee, C. J.; Yoon, H. G.;Kim, W. J. Phys. Chem. C 2009, 113, 17983. https://doi.org/10.1021/jp9078162
- Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Gu, Z. N. Carbon 2008, 46, 822. https://doi.org/10.1016/j.carbon.2008.02.015
- Hiraoka, T.; Yamada, T.; Hata, K.; Futaba, D. N.; Kurachi, H.;Uemura, S.; Yumura, M.; Iijima, S. J. Am. Chem. Soc. 2006, 128,13338. https://doi.org/10.1021/ja0643772
- Jung, Y. J.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M. Nano Lett. 2003,3, 561. https://doi.org/10.1021/nl034075n
- Talapatra, S.; Kar, S.; Pal, S. K.; Vajtai, R.; Ci, L.; Victor, P.; Shaijumon,M. M.; Kaur, S.; Nalamasu, O.; Ajayan, P. M. Nat. Nanotechnol.2006, 1, 112. https://doi.org/10.1038/nnano.2006.56
- Kim, B.; Chung, H.; Chu, K. S.; Yoon, H. G.; Lee, C. J.; Kim, W.Synth. Met. 2010, 160, 584. https://doi.org/10.1016/j.synthmet.2009.12.008
- Kim, B.; Chung, H.; Kim, W. J. Phys. Chem. C 2010, 114, 15223. https://doi.org/10.1021/jp105498d
- Ye, H. S.; Liu, X.; Cui, H. F.; Zhang, W. D.; Sheu, F. S.; Lim, T. M.Electrochem. Commun. 2005, 7, 249. https://doi.org/10.1016/j.elecom.2005.01.008
- Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima,S. Science 2004, 306, 1362. https://doi.org/10.1126/science.1104962
- Qu, L.; Dai, L. J. Mater. Chem. 2007, 17, 3401. https://doi.org/10.1039/b703046k
- Zhang, H.; Cao, G. P.; Yang, Y. S.; Gu, Z. N. J. Electrochem. Soc.2008, 155, K19. https://doi.org/10.1149/1.2811864
- Andreas, H. A.; Conway, B. E. Electrochim. Acta 2006, 51, 6510. https://doi.org/10.1016/j.electacta.2006.04.045
- Conway, B. E. Electrochemical Supercapacitors-Scientific Fundamentalsand Technological Application; Kluwer Academic:New York, 1999.
- Lewandowski, A.; Olejniczak, A.; Galinski, M.; Stepniak, I. J.Power Sources 2010, 195, 5814. https://doi.org/10.1016/j.jpowsour.2010.03.082
Cited by
- Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1523
- Curvature Effects on the Interfacial Capacitance of Carbon Nanotubes in an Ionic Liquid vol.117, pp.45, 2013, https://doi.org/10.1021/jp408085w
- Relative contributions of quantum and double layer capacitance to the supercapacitor performance of carbon nanotubes in an ionic liquid vol.15, pp.45, 2013, https://doi.org/10.1039/C3CP52590B
- Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: a review vol.19, pp.11, 2013, https://doi.org/10.1007/s11581-013-0979-x
- Ultrahigh-Power Flexible Electrochemical Capacitors Using Binder-Free Single-Walled Carbon Nanotube Electrodes and Hydrogel Membranes vol.118, pp.6, 2014, https://doi.org/10.1021/jp410502s
- Systematic review of catalyst nanoparticles synthesized by solution process: towards efficient carbon nanotube growth vol.73, pp.2, 2015, https://doi.org/10.1007/s10971-014-3600-5
- A hydrogen peroxide biosensor based on multiwalled carbon nanotubes-polyvinyl butyral film modified electrode vol.52, pp.2, 2016, https://doi.org/10.1134/S1023193516020051
- Functional composition and electrochemical characteristics of oxidized nanosized carbon vol.58, pp.6, 2017, https://doi.org/10.1134/S0022476617060178
- Moving towards high-power, high-frequency and low-resistance CNT supercapacitors by tuning the CNT length, axial deformation and contact resistance vol.23, pp.30, 2012, https://doi.org/10.1088/0957-4484/23/30/305401
- Development of High Performance Electrochemical Capacitor: A Systematic Review of Electrode Fabrication Technique Based on Different Carbon Materials vol.2, pp.10, 2013, https://doi.org/10.1149/2.014310jss
- Nanoarchitectures for Mesoporous Metals vol.28, pp.6, 2016, https://doi.org/10.1002/adma.201502593
- Highly efficient growth of vertically aligned carbon nanotubes on Fe-Ni based metal alloy foils for supercapacitors vol.7, pp.4, 2010, https://doi.org/10.1088/2043-6262/7/4/045016
- Printable Ta Substrate with High Stability and Enhanced Interface Adhesion for Flexible Supercapacitor Performance Improvement vol.4, pp.9, 2010, https://doi.org/10.1002/admt.201900338
- Redox Processes in Reduced Graphite Oxide Decorated by Carboxyl Functional Groups vol.256, pp.9, 2019, https://doi.org/10.1002/pssb.201800700