DOI QR코드

DOI QR Code

Nonrelativistic Solutions of Morse Potential from Relativistic Klein-Gordon Equation

  • Sun, Ho-Sung (Department of Chemistry, Sungkyunkwan University)
  • Received : 2010.08.12
  • Accepted : 2010.09.27
  • Published : 2010.12.20

Abstract

Recently it is suggested that it may be possible to obtain the approximate or exact bound state solutions of nonrelativistic Schr$\ddot{o}$dinger equation from relativistic Klein-Gordon equation, which seems to be counter-intuitive. But the suggestion is further elaborated to propose a more detailed method for obtaining nonrelativistic solutions from relativistic solutions. We demonstrate the feasibility of the proposed method with the Morse potential as an example. This work shows that exact relativistic solutions can be a good starting point for obtaining nonrelativistic solutions even though a rigorous algebraic method is not found yet.

Keywords

References

  1. Klein, O. Z. Phys. 1926, 37, 895. https://doi.org/10.1007/BF01397481
  2. Gordon, W. Z. Phys. 1927, 40, 117. https://doi.org/10.1007/BF01295079
  3. Greiner, W. Relativistic Quantum Mechanics; Springer: Berlin, 1990.
  4. Jana, T. K.; Roy P. Phys. Lett. A 2009, 373, 1239. https://doi.org/10.1016/j.physleta.2009.02.007
  5. Jana, T.; Roy, P. Phys. Lett. A 2007, 361, 55. https://doi.org/10.1016/j.physleta.2006.09.032
  6. Chen, G.; Chen, Z.; Xuan, P. Phys. Lett. A 2006, 352, 317. https://doi.org/10.1016/j.physleta.2005.12.024
  7. Diao, Y.; Yi, L.; Jia, C. Phys. Lett. A 2004, 332, 157. https://doi.org/10.1016/j.physleta.2004.09.051
  8. Chen, G. Phys. Lett. A 2005, 339, 300. https://doi.org/10.1016/j.physleta.2005.03.040
  9. de Castro, A. S. Phys. Lett. A 2005, 338, 81. https://doi.org/10.1016/j.physleta.2005.02.027
  10. de Souza Dutra, A.; Chen, G. Phys. Lett. A 2006, 349, 297. https://doi.org/10.1016/j.physleta.2005.09.056
  11. Qiang, W.-C.; Zhou, R.-S.; Gao, Y. Phys. Lett. A 2007, 371, 201. https://doi.org/10.1016/j.physleta.2007.04.109
  12. Chen, G.; Chen, Z.-D.; Lou, Z.-M. Phys. Lett. A 2004, 331, 374. https://doi.org/10.1016/j.physleta.2004.09.032
  13. Mehmet, S.; Harun, E. J. Phys. A: Math. Gen. 2004, 37, 4379. https://doi.org/10.1088/0305-4470/37/15/007
  14. Chen, G. Mod. Phys. Lett. A 2004, 19, 2009. https://doi.org/10.1142/S0217732304014677
  15. Yi, L.; Diao, Y.; Liu, J.; Jia, C. Phys. Lett. A 2004, 333, 212. https://doi.org/10.1016/j.physleta.2004.10.054
  16. Garcia, M. G.; de Castro, A. S. Ann. Phys. 2009, 324, 2372. https://doi.org/10.1016/j.aop.2009.05.010
  17. Znojil, M. J. Phys. A: Math. Gen. 2004, 37, 9557. https://doi.org/10.1088/0305-4470/37/40/016
  18. Barakat, T. Ann. Phys. 2009, 324, 725. https://doi.org/10.1016/j.aop.2008.10.008
  19. McQuarrie, B. R.; Vrscay, E. R. Phys. Rev. A 1993, 47, 868. https://doi.org/10.1103/PhysRevA.47.868
  20. Barton, G. J. Phys. A: Math. Theor. 2007, 40, 1011. https://doi.org/10.1088/1751-8113/40/5/010
  21. Hall, R. L. Phys. Lett. A 2007, 372, 12. https://doi.org/10.1016/j.physleta.2007.07.003
  22. Alhaidari, A. D.; Bahlouli, H.; Al-Hasan, A. Phys. Lett. A 2006, 349, 87. https://doi.org/10.1016/j.physleta.2005.09.008
  23. Zhao, X.-Q.; Jia, C.-S.; Yang, Q.-B. Phys. Lett. A 2005, 337, 189. https://doi.org/10.1016/j.physleta.2005.01.062
  24. Hall, R. L.; Lucha, W. Phys. Lett. A 2010, 374, 1980. https://doi.org/10.1016/j.physleta.2010.03.006
  25. Sun, H. Phys. Lett. A 2009, 374, 116. https://doi.org/10.1016/j.physleta.2009.11.003
  26. Morse, P. M. Phys. Rev. 1929, 34, 57. https://doi.org/10.1103/PhysRev.34.57
  27. Herzberg, G. Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules; Van Nostrand Reinhold: New York, 1950.
  28. Cooper, F.; Khare, A.; Sukhatme, U. Phys. Rep. 1995, 251, 267. https://doi.org/10.1016/0370-1573(94)00080-M
  29. Sun, H. Phys. Lett. A 2005, 338, 309. https://doi.org/10.1016/j.physleta.2005.02.054
  30. Sun, H. to be published.
  31. Pilkuhn, H. M. Relativistic Quantum Mechanics; Springer: New York, 2003.

Cited by

  1. Quantization Rule for Relativistic Klein-Gordon Equation vol.32, pp.12, 2010, https://doi.org/10.5012/bkcs.2011.32.12.4233
  2. Eigensolution techniques, their applications and Fisherʼs information entropy of the Tietz–Wei diatomic molecular model vol.89, pp.11, 2010, https://doi.org/10.1088/0031-8949/89/11/115204