DOI QR코드

DOI QR Code

Biochemical and NMR Characterization of MTH1880 Mutant Proteins for Folding-Unfolding Studies

  • Kim, Hee-Youn (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Ryu, Soo-Young (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Yun, Ji-Hye (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University) ;
  • Kim, Suhk-Mann (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Chang, Ik-Soo (Creative Research Initiatives Center for Proteome Biophysics, Department of Physics, Pusan National University) ;
  • Lee, Weon-Tae (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
  • Received : 2010.07.15
  • Accepted : 2010.09.16
  • Published : 2010.12.20

Abstract

MTH1880 is a hypothetical protein derived from Methanobacterium thermoautotrophicum, thermophilic methanogen. The solution structure determined by NMR spectroscopy showed that it has a novel $\alpha+\beta$-fold with a highly acidic ligand binding pocket. Since MTH1880 maintains its ultra-stable structural characteristics at both high temperature and pressure, it has been considered as an excellent model for studying protein folding. To initiate the structural and folding study of MTH1880 in proving its unusual stability, we performed the site directed mutagenesis and biochemical analysis of MTH1880 mutants. Data from circular dichroism and NMR spectroscopy suggest that the point mutations perturbed the structural stability of protein even though the secondary structure is retained. This study will provide the useful information in understanding the role of participating residues during folding-unfolding process and our result will be used in designing further folding experiments for hyper-thermopile proteins like MTH1880.

Keywords

References

  1. Jung, J. W.; Lee, W. J. Biochem. Mol. Biol. 2004, 37, 28. https://doi.org/10.5483/BMBRep.2004.37.1.028
  2. Yee, A.; Chang, X.; Pineda-Lucena, A.; Wu, B.; Semesi, A.; Le, B.; Ramelot, T.; Lee, G. M.; Bhattacharyya, S.; Gutierrez, P.; Denisov, A.; Lee, C. H.; Cort, J. R.; Kozlov, G.; Liao, J.; Finak, G.; Chen, L.; Wishart, D.; Lee, W.; McIntosh, L. P.; Gehring, K.; Kennedy, M. A.; Edwards, A. M.; Arrowsmith, C. H. Proc. Natl. Acad. Sci. USA 2002, 99, 1825. https://doi.org/10.1073/pnas.042684599
  3. Wetzel, S. K.; Settanni, G.; Kenig, M.; Binz, H. K.; Plückthun, A. J. Mol. Biol. 2008, 376, 241. https://doi.org/10.1016/j.jmb.2007.11.046
  4. Kim, B.; Jung, J.; Hong, E.; Yee, A.; Arrowsmith, C. H.; Lee, W. Proteins 2006, 62, 819. https://doi.org/10.1002/prot.20832
  5. Pande, V. S.; Grosberg, A. Yu.; Tanaka, T.; Rokhsar, D. S. Curr. Opin. Struct. Biol. 1998, 8, 68. https://doi.org/10.1016/S0959-440X(98)80012-2
  6. Skolnick, J. Proc. Natl. Acad. Sci. USA 2005, 102, 2265. https://doi.org/10.1073/pnas.0500128102
  7. Sung, Y. H.; Hong, H. D.; Cheong, C.; Kim, J. H.; Cho, J. M.; Kim, Y. R.; Lee, W. J. Biol. Chem. 2001, 276, 44229. https://doi.org/10.1074/jbc.M104239200
  8. Marc, J.; Robert, L. B. Nature Structural Biology 1996, 3, 613. https://doi.org/10.1038/nsb0796-613
  9. Shi, J.; Koteiche, H. A.; McHaourab, H. S.; Stewart, P. L. J. Biol. Chem. 2006, 281, 40420. https://doi.org/10.1074/jbc.M608322200
  10. Lee, C. H.; Jung, J. W.; Arrowmith, C. H.; Lee, W. Protein Sci. 2004, 13, 1148. https://doi.org/10.1110/ps.03472104
  11. Wetzel, S. K.; Settanni, G.; Kenig, M.; Binz, H. K.; Pluckthun, A. J. Mol. Biol. 2008, 376, 241. https://doi.org/10.1016/j.jmb.2007.11.046
  12. Goliasnaia, N. V.; Tiurina, N. A. Mikrobiologiia 2000, 69, 805.
  13. Whiteford, J. R.; Ko, S.; Lee, W.; Couchman, J. R. J. Biol. Chem. 2008, 283, 29322. https://doi.org/10.1074/jbc.M803505200
  14. Thompson, J. D.; Higgins, D. G.; Gibson, T. J. Nucleic Acids Res. 1994, 22, 4673. https://doi.org/10.1093/nar/22.22.4673
  15. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J. Biomol. NMR 1995, 6, 277.
  16. Sreerama, N.; Woody, R. W. Methods Enzymol. 2004, 383, 318. https://doi.org/10.1016/S0076-6879(04)83013-1
  17. Kelly, S. M.; Price, N. C. Curr. Protein Pept. Sci. 2000, 1, 349-84. https://doi.org/10.2174/1389203003381315
  18. Goliasnaia, N. V.; Tiurina, N. A. Mikrobiologiia 2000, 69, 805.
  19. Thompson, J. D.; Higgins, D. G.; Gibson T. J. Nucleic Acids Res. 1994, 22, 4673. https://doi.org/10.1093/nar/22.22.4673