DOI QR코드

DOI QR Code

부분 내재적 조화 균형법을 이용한 주기적인 2차원 비정상 유동 해석

2-D Periodic Unsteady Flow Analysis Using a Partially Implicit Harmonic Balance Method

  • 임동균 (한국과학기술원 기계항공시스템학부) ;
  • 박수형 (건국대학교 항공우주정보시스템공학과) ;
  • 권장혁 (한국과학기술원 기계항공시스템학부)
  • 투고 : 2010.09.04
  • 심사 : 2010.11.25
  • 발행 : 2010.12.01

초록

본 연구에서는 주기적 비정상 유동 해석을 위해 푸리에 변환을 이용하는 조화 균형법의 효율적인 해법을 제안한다. 내재적으로 유속항을 처리하고 외재적으로 조화 원천항을 처리하였다. 외재적 조화 균형법 보다 더 빠르게 수렴 시킬 수 있으며 내재적 조화 균형법을 적용할 때 추가되는 자코비안 행렬을 처리할 필요가 없다. 또한 완전 내재적 기법에 상응하는 수준의 수렴안정성을 확인할 수 있었다. 2차원 비정상 유동 문제로 피칭하는 NACA0012 익형에 적용하였으며 이중 시간 적분법 및 외재적 Runge-Kutta기법의 해와 매우 일치하는 결과를 얻었다.

An efficient solution method for harmonic balance techniques with Fourier transform is presented for periodic unsteady flow problems. The present partially-implicit harmonic balance treats the flux terms implicitly and the harmonic source term is solved explicitly. The convergence of the partially Implicit method is much faster than the explicit Runge-Kutta harmonic balance method. The method does not need to compute the additional flux Jacobian matrix from the implicit harmonic source term. Compared with fully implicit harmonic balance method, this partial approach turns out to have good convergence property. Oscillating flows over NACA0012 airfoil are considered to verify the method and to compare with results of explicit R-K(Runge-Kutta) and dual time stepping methods.

키워드

참고문헌

  1. K C. Hall, J. P. Thomas, and W. S. Clark, "Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique", AIAA Journal, Vol. 40, No. 5, pp. 879-886, May 2002. https://doi.org/10.2514/2.1754
  2. M. McMullen, A. Jameson, and J. Alonso, "Application of a Non-Linear Frequency Domain Solver to the Euler and Navier-Stokes Equations", 40th AIAA Aerospace Sciences Meeting & Exhibit, January 14-17, 2002/Reno, NV.
  3. M. McMullen. A. Jameson, and J. Alonso, "Demonstration of Nonlinear Frequnecy Domain Methods", AIAA Journal Vol.44, No.7, pp. 1428-1435, 2006. https://doi.org/10.2514/1.15127
  4. M. A. Woodgate and K J. Badcock, "Implicit Harmonic Balance Solver for Transonic Flow with Forced Motions", AIAA Journal Vol.47, No.4, pp. 893-901, April 2009. https://doi.org/10.2514/1.36311
  5. J. P. Thomas, C. H. Custer, E. H. Dowell, and K.C. Hall, "Unsteady Flow Computation Using a Harmonic Balance Approach Implemented about the OVERFLOW 2 Flow Solver", 19th AIAA Computational Fluid Dynamics Conference, June 22-25,2009, San Antonio, Texas.
  6. Park, S.H., Kim, Y.S., and Kwon, J.H., "Prediction of Damping Coefficients Using the Unsteady Euler Equations", Journal of Spacecraft and Rockets, Vol. 40, No. 3, pp. 356-362, 2003. https://doi.org/10.2514/2.3970
  7. 고진환, 김지웅, 변도영, 박수형, “이동경계 문제의 전산유체역학을 위한 체적격자변형코드”, 한국항공우주학회지, 제 36권, 제11호, pp. 1049-1055, 2008. https://doi.org/10.5139/JKSAS.2008.36.11.1049
  8. Pulliam, T.H. and Chaussee, D.S., "A Diagonal Form of an Implicit Approximate - Factorization Algorithm", Journal of Computational Physics, Vol. 39, pp. 347-363, 1981. https://doi.org/10.1016/0021-9991(81)90156-X

피인용 문헌

  1. UNSTEADY AERODYNAMIC ANALYSIS OF HELICOPTER ROTOR BLADES USING DIAGONAL IMPLICIT HARMONIC BALANCE METHOD vol.17, pp.1, 2012, https://doi.org/10.6112/kscfe.2012.17.1.070
  2. Unsteady rotor flow analysis using a diagonally implicit harmonic balance method and an overset mesh topology vol.29, pp.1, 2015, https://doi.org/10.1080/10618562.2015.1015525