DOI QR코드

DOI QR Code

Space Partition using Context Fuzzy c-Means Algorithm for Image Segmentation

영상 분할을 위한 Context Fuzzy c-Means 알고리즘을 이용한 공간 분할

  • 노석범 (대전대학교 컴퓨터공학과) ;
  • 안태천 (원광대학교 전자 및 제어공학부) ;
  • 백용선 (대덕대학 컴퓨터웹정보과) ;
  • 김용수 (대전대학교 컴퓨터공학과)
  • Received : 2010.04.03
  • Accepted : 2010.05.24
  • Published : 2010.06.25

Abstract

Image segmentation is the basic step in the field of the image processing for pattern recognition, environment recognition, and context analysis. The Otsu's automatic threshold selection, which determines the optimal threshold value to maximize the between class scatter using the distribution information of the normalized histogram of a image, is the famous method among the various image segmentation methods. For the automatic threshold selection proposed by Otsu, it is difficult to determine the optimal threshold value by considering the sub-region characteristic of the image because the Otsu's algorithm analyzes the global histogram of a image. In this paper, to alleviate this difficulty of Otsu's image segmentation algorithm and to improve image segmentation capability, the original image is divided into several sub-images by using context fuzzy c-means algorithm. The proposed fuzzy Otsu threshold algorithm is applied to the divided sub-images and the several threshold values are obtained.

영상 분할 (Image Segmentation)은 패턴 인식, 환경 인식, 문서 분석을 위한 영상 처리 과정에서 가장 기본적인 단계이다. 영상 분할 방법들 중 Otsu의 영상의 정규화된 히스토그램의 분포 정보를 이용하여 클래스 간의 분산을 최대화 시키는 임계치값을 결정하는 자동 임계치값 선정방법이 가장 잘 알려진 방법이다. Otsu의 방법은 영상의 전 영역에 대한 히스토그램을 분석함으로써 영상의 부분적인 특성을 반영하여 임계치값을 결정하기는 어렵다. 본 논문에서는 이 어려움 해소하기 위하여 Context Fuzzy c-Means 알고리즘을 이용하여 영상을 여러 개의 부분 영역으로 나누고, 정의된 부 영역에 영상 분할 기법을 적용함으로써 부 영역들에 적합한 여러 개의 임계치값을 계산함으로써 영상 분할 성능을 개선하고자 하였다.

Keywords

References

  1. A. Rosenfeld and P. De la Torre, "Histogram concavity analysis as an aid in threshold selection," IEEE Trans. on Syst. Man Cybern., Vol. SMC-13, pp. 231-235, 1983. https://doi.org/10.1109/TSMC.1983.6313118
  2. R. Guo and S. M. Pandit, "Automatic threshold selection based on histogram modes and a discriminant criterion," Mach. Vision Appl., Vol. 10, pp. 331-338, 1998. https://doi.org/10.1007/s001380050083
  3. J. Kitter and J. Illingworth, "On thresholding selection using clustering criteria," IEEE Transaction on Syst. Man Cybern., Vol. SMC-15, pp. 652-655, 1985. https://doi.org/10.1109/TSMC.1985.6313443
  4. C. V. Jawahar, P. K. Biswas, and A. K. Ray, "Investigations on fuzzy thresholding based on fuzzy clustering," Pattern Recognition, Vol. 30, No. 10, pp. 1605-1613, 1997. https://doi.org/10.1016/S0031-3203(97)00004-6
  5. J. C. Yen, F. J. Chang, and S. Chang, "A new criterion for automatic multilevel thresholding," IEEE Trans. on Iamge Process, Vol. IP-4, pp. 370-378, 1995.
  6. N. P. Pal, "On minimum cross-entropy measure as a means of image thresholding," Pattern Recognition, Vol. 29, No. 4, pp. 575-580, 1996. https://doi.org/10.1016/0031-3203(95)00111-5
  7. A. Pikaz and A. Averbuch, " Digital image thresholding based on topological stable state," Pattern Recognition, Vol. 29, pp. 829-843, 1996. https://doi.org/10.1016/0031-3203(95)00126-3
  8. K. Ramar, S. Arunigam, S. N. Sivanandam, L. Ganesan, and D. Manimegalai, "Quantitative fuzzy measure," ICPR 2000: Intl. Conf. Pattern Recognition Letter, Vol. 21, pp.1-7, 2000.
  9. W. N. Lie, "An efficient threshold-evaluation algorithm for image segmentation based on spatial gray level concurrences," Signal Process, Vol. 33, pp. 121-126, 1993. https://doi.org/10.1016/0165-1684(93)90083-M
  10. H. D. Cheng and Y. H. Chem, "Fuzzy partition of two-dimensional histogram and its application to thresholding," Pattern Recognition, Vol. 32, pp. 825-843, 1999. https://doi.org/10.1016/S0031-3203(98)00080-6
  11. J. Sauvola and M. Pietaksinen, "Adaptive document image binarization," Pattern Recognition, Vol. 33, pp. 225-236, 2000. https://doi.org/10.1016/S0031-3203(99)00055-2
  12. Y. Yasuda, M. Dubois, and T. S. Huang, "Data compression for check processing machines," Proc. IEEE, Vol. 68, pp. 874-885, 1980. https://doi.org/10.1109/PROC.1980.11753
  13. N. Otsu, "A threshold selection method from gray-level histogram," IEEE Trans. on Syst. Man Cybern., Vol. SMC-9, No. 1, pp. 62-66, 1979.
  14. A.K. Jain, P. W. Duin, and J. Mao, "Statistical pattern recognition: a review," IEEE Trans. on Pattern Anal. Mach. Intell., Vol. 22, No. 1, pp. 4-37, 2000. https://doi.org/10.1109/34.824819
  15. B. Sankur and M. Sezgin, "Survey over image thresholding techniques and quantitative and quantitative performance evaluation," Journal of Electronic Imaging, Vol. 13, No. 1, pp. 146-165, 2004. https://doi.org/10.1117/1.1631315
  16. W. Pedrycz, "Conditional fuzzy clustering in the design of radial basis function neural networks," IEEE Trans. on Neural Network, Vol. 9, No. 4, pp. 601–612, 1998. https://doi.org/10.1109/72.701174

Cited by

  1. Incremental EM algorithm with multiresolution kd-trees and cluster validation and its application to image segmentation vol.25, pp.6, 2015, https://doi.org/10.5391/JKIIS.2015.25.6.523
  2. Performance Improvement of Stereo Matching by Image Segmentation based on Color and Multi-threshold vol.26, pp.1, 2016, https://doi.org/10.5391/JKIIS.2016.26.1.044