초록
데이터 마이닝(Data Mining)은 환경으로부터 수집된 데이터에서 패턴을 추출하고 의미 있는 정보를 발견하기 위하여 주로 사용된다. 하지만, 기존의 방법은 데이터의 수집이 완료된 상태에서 분석하는 것을 기반으로 하고 있으며, 시간의 흐름에 따른 패턴의 변화를 반영하기 어렵다. 본 논문은 연속성(Continuity data), 대량성(Large scale) 그리고 패턴의 가변성(Changed pattern)과 같은 특성을 가지는 스트림 데이터(Stream Data)의 분석을 위한 스트리밍 의사결정 나무(Streaming Decision Tree : SDT) 방법을 소개한다. SDT는 연속적으로 발생하는 데이터를 블록으로 정의하고, 각 블록은 의사결정나무 학습 방법을 이용하여 규칙을 추출한다. 추출된 규칙은 발생 시간, 빈도 그리고 모순 등을 고려하여 결합하였다. 실험에서는 시계열 데이터를 이용하여 분석하였고, 적절한 결과를 확인하였다.
Data Mining is mainly used for pattern extracting and information discovery from collected data. However previous methods is difficult to reflect changing patterns with time. In this paper, we introduce Streaming Decision Tree(SDT) analyzing data with continuity, large scale, and changed patterns. SDT defines continuity data as blocks and extracts rules using a Decision Tree's learning method. The extracted rules are combined considering time of occurrence, frequency, and contradiction. In experiment, we applied time series data and confirmed resonable result.