Fuzzy r-minimal Continuous Functions Between Fuzzy Minimal Spaces and Fuzzy Topological Spaces

Won Keun Min

Department of Mathematics, Kangwon National University, Chuncheon, 200-701, Korea

Abstract

In this paper, we introduce the concepts of fuzzy r-minimal continuous function and fuzzy r-minimal open function between a fuzzy r-minimal space and a fuzzy topological space. We also investigate characterizations and properties for such functions.

Key Words: r-minimal structure, fuzzy r-minimal continuous, fuzzy r-minimal open function

1. Introduction

The concept of fuzzy set was introduced by Zadeh [10]. Chang [2] defined fuzzy topological spaces using fuzzy sets. In [3, 8], Chattopadhyay, Hazra and Samanta introduced a smooth topological space which is a generalization of fuzzy topological space.

In [9], Yoo et al. introduced the concept of fuzzy r-minimal space which is an extension of the smooth topological space. The concept of fuzzy r-M continuity was also introduced and investigated in [9]. In this paper, we introduce the concepts of fuzzy r-minimal continuous function and fuzzy r-minimal open function on fuzzy r-minimal spaces and investigate characterizations for such functions.

2. Preliminaries

Let I be the unit interval [0,1] of the real line. A member A of I^X is called a fuzzy set of X. By $\tilde{\mathbf{0}}$ and $\tilde{\mathbf{1}}$ we denote constant maps on X with value 0 and 1, respectively. For any $A \in I^X$, A^c denotes the complement $\tilde{\mathbf{1}} - \mathbf{A}$. All other notations are standard notations of fuzzy set theory.

An fuzzy point x_{α} in X is a fuzzy set x_{α} defined as follows

$$x_{\alpha}(y) = \begin{cases} \alpha, & \text{if } y = x, \\ 0, & \text{if } y \neq x. \end{cases}$$

A fuzzy point x_{α} is said to belong to a fuzzy set A in X, denoted by $x_{\alpha} \in A$, if $\alpha \leq A(x)$ for $x \in X$. A fuzzy set A in X is the union of all fuzzy points which belong to A.

Let $f: X \to Y$ be a function and $A \in I^X$ and $B \in I^Y$.

Then f(A) is a fuzzy set in Y, defined by

$$f(A)(y) = \begin{cases} \sup_{z \in f^{-1}(y)} A(z), & \text{if } f^{-1}(y) \neq \emptyset, \\ 0, & \text{otherwise} \end{cases}$$

for $y \in Y$ and $f^{-1}(B)$ is a fuzzy set in X, defined by $f^{-1}(B)(x) = B(f(x)), x \in X$.

A fuzzy topology (or smooth topology) [3, 5] on X is a map $\mathcal{T}: I^X \to I$ which satisfies the following properties:

(1) $T(\tilde{0}) = T(\tilde{1}) = 1$.

(2) $\mathcal{T}(A_1 \wedge A_2) \geq \mathcal{T}(A_1) \wedge \mathcal{T}(A_2)$ for $A_1, A_2 \in I^X$.

(3) $\mathcal{T}(\bigvee A_i) \ge \bigwedge \mathcal{T}(A_i)$ for $A_i \in I^X$.

The pair (X, \mathcal{T}) is called a *fuzzy topological space*. And $A \in I^X$ is said to be *fuzzy r-open* (resp., *fuzzy r-closed*) if $\mathcal{T}(A) \geq r$ (resp., $\mathcal{T}(A^c) \geq r$).

The r-closure of A, denoted by cl(A,r), is defined as $cl(A,r) = \cap \{B \in I^X : A \subseteq B \text{ and } B \text{ is fuzzy } r\text{-closed}\}.$

The *r-interior* of A, denoted by int(A,r), is defined as $int(A,r) = \bigcup \{B \in I^X : B \subseteq A \text{ and } B \text{ is fuzzy } r\text{-open}\}.$

Definition 2.1 ([9]). Let X be a nonempty set and $r \in (0,1] = I_0$. A fuzzy family $\mathcal{M}: I^X \to I$ on X is said to have a *fuzzy r-minimal structure* if the family

$$\mathcal{M}_r = \{ A \in I^X \mid \mathcal{M}(A) \ge r \}$$

contains $\tilde{0}$ and $\tilde{1}$.

Then the (X, \mathcal{M}) is called a *fuzzy r-minimal space* (simply r-FMS) if \mathcal{M} has a fuzzy r-minimal structure. Every member of \mathcal{M}_r is called a *fuzzy r-minimal open* set. A fuzzy set A is called a *fuzzy r-minimal closed* set if the complement of A (simply, A^c) is a fuzzy r-minimal open set.

Let (X, \mathcal{M}) be an r-FMS and $r \in I_0$. The fuzzy r-minimal closure and the fuzzy r-minimal interior of A [9],

Manuscript received Oct. 5, 2009; revised Oct. 22, 2009; Accepted Dec. 5, 2009.

Corresponding Author: wkmin@kangwon.ac.kr (Won Keun Min)

denoted by mC(A, r) and mI(A, r), respectively, are defined as

$$mC(A,r) = \cap \{B \in I^X : B^c \in \mathcal{M}_r \text{ and } A \subseteq B\},$$

 $mI(A,r) = \cup \{B \in I^X : B \in \mathcal{M}_r \text{ and } B \subseteq A\}.$

Theorem 2.2 ([9]). Let (X, \mathcal{M}) be an r-FMS and A, B in

- (1) $mI(A, r) \subseteq A$ and if A is a fuzzy r-minimal open set, then mI(A, r) = A.
- (2) $A \subseteq mC(A, r)$ and if A is a fuzzy r-minimal closed set, then mC(A, r) = A.
- (3) If $A \subseteq B$, then $mI(A,r) \subseteq mI(B,r)$ and $mC(A,r) \subseteq mC(B,r)$.
- (4) $mI(A,r) \cap mI(B,r) \supseteq mI(A \cap B,r)$ and $mC(A,r) \cup mC(B,r) \subseteq mC(A \cup B,r)$.
- mI(mI(A,r),r)mI(A,r)mC(mC(A, r), r) = mC(A, r).
- (6) $\tilde{1} mC(A, r) = mI(\tilde{1} A, r)$ and $\tilde{1} mI(A, r) =$ $mC(\tilde{\mathbf{1}}-A,r)$.

Definition 2.3 ([9]). Let (X, \mathcal{M}_X) and (Y, \mathcal{M}_Y) be two r-FMS's. Then a function $f: X \to Y$ is said to be

- (1) fuzzy r-M continuous if for every fuzzy r-minimal open set A in Y, $f^{-1}(A)$ is fuzzy r-minimal open in X,
- (2) fuzzy r-M open if for every fuzzy r-minimal open set G in X, f(G) is fuzzy r-minimal open in Y.

3. Fuzzy r-minimal continuous function and fuzzy r-minimal open functions

Definition 3.1. Let (X, \mathcal{M}_X) be an r-FMS and (Y, σ) a fuzzy topological space. Then $f: X \to Y$ is said to be fuzzy r-minimal continuous if for every fuzzy r-open set Ain Y, $f^{-1}(A)$ is fuzzy r-minimal open in X.

Theorem 3.2. Let $f: X \to Y$ be a function between an r-FMS (X, \mathcal{M}_X) and a fuzzy topological space (Y, σ) . Then we have the following:

- (1) f is fuzzy r-minimal continuous.
- (2) $f^{-1}(B)$ is a fuzzy r-minimal closed set for each fuzzy r-closed set B in Y.
 - (3) $f(mC(A,r)) \subseteq cl(f(A),r)$ for $A \in I^X$.

 - (4) $mC(f^{-1}(B), r) \subseteq f^{-1}(cl(B, r))$ for $B \in I^Y$. (5) $f^{-1}(int(B, r)) \subseteq mI(f^{-1}(B), r)$ for $B \in I^Y$.

Then $(1) \Leftrightarrow (2) \Rightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5)$.

Proof. $(1) \Leftrightarrow (2)$ Obvious.

$$\begin{split} &(2)\Rightarrow (3) \text{ For } A\in I^X,\\ &f^{-1}(cl(f(A),r))\\ &=f^{-1}(\cap \{F\in I^Y: f(A)\subseteq F, F \text{ is fuzzy r-closed }\}) \end{split}$$

$$= \cap \{f^{-1}(F) : A \subseteq f^{-1}(F), F \text{ is fuzzy } r\text{-closed}\}$$

$$\supseteq \cap \{K \in I^X : A \subseteq K, K \text{ is fuzzy } r\text{-minimal closed}\}$$

$$= mC(A, r).$$

Hence $f(mC(A,r)) \subseteq cl(f(A),r)$.

 $(3) \Leftrightarrow (4)$ Fort $B \in I^Y$, from (3), it follows

$$f(mC(f^{-1}(B),r)) \subseteq cl(f(f^{-1}(B)),r) \subseteq cl(B,r).$$

Hence (4) is obtained and similarly, we get $(4) \Rightarrow (3)$.

$$(4) \Leftrightarrow (5)$$
 From Theorem 2.2, it is obvious. \square

Example 3.3. Let X = I and let us consider two fuzzy sets A, B defined as

$$A(x) = \frac{1}{2}x, \quad x \in X;$$

$$B(x) = -\frac{1}{2}(x-1), \ x \in X.$$

Consider a fuzzy family

$$\mathcal{M}(U) = \left\{ \begin{array}{ll} \frac{1}{2}, & \text{if } U = \tilde{\mathbf{0}}, \tilde{\mathbf{1}}, \\ \frac{2}{3}, & \text{if } U = A, B, \\ 0, & \text{otherwise,} \end{array} \right.$$

and a fuzzy topology

$$\sigma(U) = \begin{cases} 1, & \text{if } U = \tilde{\mathbf{0}}, \tilde{\mathbf{1}}, \mathbf{A}, \mathbf{B}, \\ \frac{1}{3}, & \text{if } U = A \cap B, A \cup B, \\ 0, & \text{otherwise.} \end{cases}$$

Then the identity function $f:(X,\mathcal{M})\to (X,\sigma)$ satisfies the part (3) in Theorem 3.2 but f is not fuzzy $\frac{1}{3}$ -minimal continuous.

Let X be a nonempty set and $\mathcal{M}: I^X \to I$ a fuzzy family on X. The fuzzy family \mathcal{M} is said to have the property (\mathcal{U}) [9] if for $A_i \in \mathcal{M}$ ($i \in J$),

$$\mathcal{M}(\cup A_i) \ge \wedge \mathcal{M}(A_i).$$

Theorem 3.4. Let $f: X \to Y$ be a function between an r-FMS (X, \mathcal{M}_X) and a fuzzy topological space (Y, σ) . If \mathcal{M}_X has the property (\mathcal{U}) , then f is fuzzy r-minimal continuous iff for a fuzzy point x_{α} in X and each fuzzy r-open set V containing $f(x_{\alpha})$, there is a fuzzy r-minimal open set U containing x_{α} such that $f(U) \subseteq V$.

Proof. Let f be fuzzy r-minimal continuous, then for fuzzy point x_{α} in X and each fuzzy r-open set V containing $f(x_{\alpha})$, from Theorem 3.2 (5), $x_{\alpha} \in f^{-1}(V) =$ $f^{-1}(int(V,r)) \subseteq mI(f^{-1}(V),r)$. So there exists a fuzzy r-minimal open set U containing x_{α} such that $x_{\alpha} \in U \subseteq$ $f^{-1}(V)$. Hence the result is obtained.

For the converse, let a fuzzy set A be fuzzy r-open in Y. Then by hypothesis, we have $\cup U = f^{-1}(A)$ for each fuzzy r-minimal open set U in X. Hence by the property (\mathcal{U}) , $f^{-1}(A)$ is fuzzy r-minimal open.

Corollary 3.5. Let $f: X \to Y$ be a function between an r-FMS (X, \mathcal{M}_X) and a fuzzy topological space (Y, τ) . If \mathcal{M}_X has property (\mathcal{U}) , then the following are equivalent:

- (1) f is fuzzy r-minimal continuous.
- (2) For fuzzy point x_{α} in X and each fuzzy r-open set V containing $f(x_{\alpha})$, there is a fuzzy r-minimal open set U containing x_{α} such that $f(U) \subseteq V$.
- (3) $f^{-1}(B)$ is fuzzy r-minimal closed, for each fuzzy r-closed set B in Y.
 - (4) $f(mC(A,r)) \subseteq cl(f(A),r)$ for $A \in I^X$.
 - (5) $mC(f^{-1}(B), r) \subseteq f^{-1}(cl(B, r))$ for $B \in I^Y$.
 - (6) $f^{-1}(int(B,r)) \subseteq mI(f^{-1}(B),r)$ for $B \in I^Y$.

Proof. It follows from Theorem 3.2 and Theorem 3.4. \Box

Definition 3.6. Let (X, σ) be a fuzzy topological space and (Y, \mathcal{M}_Y) an r-FMS. Then $f: (X, \sigma) \to (Y, \mathcal{M}_Y)$ is said to be *fuzzy r-minimal open* if for every fuzzy r-open set A in X, f(A) is fuzzy r-minimal open in Y.

Theorem 3.7. Let $f: X \to Y$ be a function on a fuzzy topological space (X, σ) and an r-FMS (Y, \mathcal{M}_Y) .

- (1) f is fuzzy r-minimal open.
- (2) $f(int(A,r)) \subseteq mI(f(A),r)$ for $A \in I^X$.
- (3) $int(f^{-1}(B), r) \subseteq f^{-1}(mI(B), r)$ for $B \in I^Y$. Then $(1) \Rightarrow (2) \Leftrightarrow (3)$.

Proof. $(1) \Rightarrow (2)$ For $A \in I^X$,

f(int(A), r)

- $= f(\cup \{B \in I^X : B \subseteq A, B \text{ is fuzzy } r\text{-open}\})$
- $= \bigcup \{f(B) \in I^Y : f(B) \subseteq f(A),$

f(B) is fuzzy r-minimal open}

 $\subseteq \cup \{U \in I^Y : U \subseteq f(A), U \text{ is fuzzy } r\text{-minimal open}\}\ = mI(f(A), r).$

Hence $f(int(A), r) \subseteq mI(f(A), r)$.

 $(2) \Leftrightarrow (3)$ For $B \in I^Y$, from (3) it follows that

$$f(int(f^{-1}(B),r)) \subseteq mI(f(f^{-1}(B)),r) \subseteq mI(B,r).$$

This implies (3). Similarly, we get the implication (3) \Rightarrow (2).

Remark 3.8. In Example 3.3, consider the identity function $f:(X,\sigma)\to (X,\mathcal{M}_X)$. Then f satisfies the statement (2) in Theorem 3.7, but it is not fuzzy r-minimal open.

Lemma 3.9. Let $f: X \to Y$ be a function on a fuzzy topological space (X, σ) and an r-FMS (Y, \mathcal{M}_Y) . If f is fuzzy r-minimal open, then f(A) = mI(f(A), r) for every fuzzy r-open set A in X.

Proof. It follows from Theorem 2.2 (1). \Box

Theorem 3.10. ([9]) Let (X, \mathcal{M}) be an r-FMS with the property (\mathcal{U}) . Then

(1) mI(A,r) = A if and only if $A \in \mathcal{M}_r$ for $A \in I^X$. (2) mC(A,r) = A if and only if $A^c \in \mathcal{M}_r$ for $A \in I^X$. From Lemma 3.9 and Theorem 3.10, obviously the next corollary is obtained:

Corollary 3.11. Let $f:(X,\sigma)\to (Y,\mathcal{M}_Y)$ be a function on a fuzzy topological space (X,σ) and an r-FMS (Y,\mathcal{M}_Y) . If \mathcal{M}_Y has property (\mathcal{U}) , then the following are equivalent:

- (1) f is fuzzy r-minimal open.
- (2) $f(int(A, r)) \subseteq mI(f(A), r)$ for $A \in I^X$.
- (3) $int(f^{-1}(B), r) \subseteq f^{-1}(mI(B, r))$ for $B \in I^Y$.

Definition 3.12. Let (X, σ) be a fuzzy topological space and (Y, \mathcal{M}_Y) be an r-FMS. Then $f: (X, \sigma) \to (Y, \mathcal{M}_Y)$ is said to be *fuzzy r-minimal closed* if for every fuzzy r-minimal closed set A in X, f(A) is fuzzy r-minimal closed in Y.

Theorem 3.13. Let $f:(X,\sigma)\to (Y,\mathcal{M}_Y)$ be a function on a fuzzy topological space (X,σ) and an r-FMS (Y,\mathcal{M}_Y) .

- (1) f is fuzzy r-minimal closed.
- (2) $mC(f(A), r) \subseteq f(cl(A, r))$ for $A \in I^X$.
- (3) $f^{-1}(mC(B,r)) \subseteq cl(f^{-1}(B),r)$ for $B \in I^Y$.

Then $(1) \Rightarrow (2) \Leftrightarrow (3)$.

Proof. It is similar to the proof of Theorem 3.7. \Box

Lemma 3.14. Let $f:(X,\sigma) \to (Y,\mathcal{M}_Y)$ be a function on a fuzzy topological space (X,σ) and an r-FMS (Y,\mathcal{M}_Y) . If f is fuzzy r-minimal closed, then f(A) = mC(f(A),r) for every fuzzy r-minimal closed set A in X.

Proof. It is obvious.

Corollary 3.15. Let $f: X \to Y$ be a function on a fuzzy topological space (X, σ) and an r-FMS (Y, \mathcal{M}_Y) . If \mathcal{M}_Y has property (\mathcal{U}) , then the following are equivalent:

- (1) f is fuzzy r-minimal closed.
- (2) $mC(f(A), r) \subseteq f(cl(A), r)$ for $A \in I^X$.
- (3) $f^{-1}(mC(B,r)) \subseteq cl(f^{-1}(B),r)$ for $B \in I^Y$.

References

- [1] S. E. Abbas, "Fuzzy beta-irresolute functions", Applied Mathematics and Computation, vol. 157, pp. 369–380, 2004.
- [2] C. L. Chang, "Fuzzy topological spaces", *J. Math. Anal. Appl.*, vol. 24, pp. 182–190, 1968.
- [3] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, "Gradation of openness: Fuzzy topology", *Fuzzy Sets and Systems*, vol. 49, pp. 237–242, 1992.
- [4] S. J. Lee and E. P. Lee, "Fuzzy *r*-preopen and fuzzy *r*-precontinuous maps", *Bull. Korean Math. Soc.*, vol. 36, pp. 91–108, 1999.
- [5] S. J. Lee and E. P. Lee, "Fuzzy *r*-continuous and fuzzy *r*-semicontinuous maps", *Int. J. Math. Math. Sci.*, vol. 27, pp. 53–63, 2001.
- [6] S. J. Lee and E. P. Lee, "Fuzzy *r*-regular open sets and fuzzy almost *r*-continuous maps", *Bull. Korean Math. Soc.*, vol. 39, pp. 91–108, 2002.

- [7] W. K. Min and M. H. Kim, "Fuzzy *r*-minimal semiopen sets and fuzzy r-M semicontinuous functions on fuzzy r-minimal spaces", *Proceedings of KIIS Spring Conference* 2009, vol. 19, no. 1, pp. 49-52, 2009.
- [8] A. A. Ramadan, "Smooth topological spaces", *Fuzzy Sets and Systems*, vol. 48, pp. 371–375, 1992.
- [9] Y. H. Yoo, W. K. Min and J. I. Kim. "Fuzzy r-Minimal Structures and Fuzzy r-Minimal Spaces", Far East Journal of Mathematical Sciences, vol. 33, no. 2, pp. 193-205, 2009.
- [10] L. A. Zadeh, "Fuzzy sets", *Information and Control*, vol. 8, pp. 338–353, 1965.

Won Keun Min

Professor of Kangwon National University Research Area: Fuzzy topology, General topology E-mail: wkmin@kangwon.ac.kr