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Abstract

In this paper, we investigate the properties of antitone Galois connection and formal concepts. Moreover, we show that
order reverse generating maps induce formal, attribute oriented and object oriented concepts on a complete residuated

|attice.
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1. Introduction and preliminaries

Formal concept analysis is an important mathematical
tool for dataanalysis and knowledge processing [1-4,8,10].
A fuzzy context consists of (X,Y, R) where X is a set of
objects, Y isaset of attributes and R is arelation between
X and Y. Bélohlavek [1-4] developed the notion of formal
concepts with R € LX*Y on a complete residuated lattice
L.

In this paper, we investigate the properties of antitone
Galois connections. Using their properties, we define for-
mal, attribute oriented and object oriented concepts on a
complete residuated lattice. Moreover, we show that order
reverse generating maps induce formal, attribute oriented
and object oriented concepts on a complete residuated lat-
tice.

Definition 1.1. [9] A triple (L, <, ®) is called a complete
residuated lattice iff it satisfies the following conditions:

(LY L = (L,<,1,0) isacomplete lattice where 1 is
the universal upper bound and 0 denotesthe universal lower
bound;

(L2) (L, ®, 1) isacommutative monoid;

(L3) @ isdistributive over arbitrary joins, i.e.

(\/ a;) Ob= \/(%‘@b)~

el el

Definean operation — asa - b=\/{ce L|a®c <
b}, foreacha,b € L.

Remark 1.2. [9] (1) Each frame (L, <, A) is a complete
residuated lattice.
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(2) The unit interval with a left-continuous t-norm t,
([0,1], <, t), isacomplete residuated | attice.

(3) Define a binary operation ® on [0,1] by z © y =
max{0,z+y—1}. Then ([0, 1], <, ®) isacomplete resid-
uated lattice.

Let (L, <,®) be acomplete residuated lattice. A order
reversingmap * : L — L defined by a* = a — O iscalled
astrong negation if o** = a for eacha € L.

In this paper, we assume (L, <,®,*) is a complete
residuated | attice with a strong negation *.

Lemma 1.3. [9] For each x,y, 2z, x;,y; € L, we have the
following properties.
DODfy<zyjzoy<zodz,z—oy<z— zad
z—x<y—2x.
@zoy<aAy.
@)z — (Nier ¥i) = Nier(@ — i)
4) (\/iel“ T) —y = /\iel“(xi — ).
®) Nier ¥i = (Vierva)* and V,cp vl = (Nier vi)™
O)(z0y) mz=—=@H—2)=y—(z—2)
MNzoy=(x—-y")*andz —y=y* — z*.

2. Antitone Galois connections and for mal
concepts

Definition 2.1. [5] Let X and Y be two sets. Let
w67 LY — LY andw ™, 90,6 LY — LX
be operators.

(1) The pair (w—,w*") is called antitone Galois con-
nection between X and Y if for p € LX and p € LY,
p<w(p)iff p < w™(p).

(2) Thepair (¢, ¢*) iscaled an isotone Galois con-
nection between X and Y if for p € LX and p € LY,
¢~ (1) < piff up < ¢~ (p). Moreover, the pair (£, ¢7)
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is called an isotone Galois connection between X and Y if
forpe LXandp e LY, 67 (p) < piff p < &7 (p).

Definition 2.2. Let w™,¢~,¢6~ : LX — LY and
w07, LY — LX befunctions. A pair (u,p) €
LX x LY iscalled:

(1) a formal concept if p = w™ (1) and p = w™ (p)
where (w™,w*") isan antitone Galios connection,

(2) an attribute oriented concept if p = ¢~ (1) and
uw= ¢ (p) where (¢, ) is an isotone Galios connec-
tion,

(3) an object oriented concept if p = £~ (u) and
w = & (p) where (¢—,£7) is an isotone Galios connec-
tion.

Theorem 2.3. Letw™ : LX — LY andw : LY — LX
be operators. Let (w™,w ") be an antitone Galois connec-
tion between X and Y. Then the following properties hold:
(ODForeachpy € LX andp € LY, u < w=(w™ ()
and p < w™ (W (p)).
(2 If 1 < po, thenw = (pg) >
p1 < p2, thenw™ (p1) > w™ (p2).

w™ (ue). Moreover, if

3 For ech ¢ € LX and p € LY,
w*gw)"(w“(p))) = w(p) and w7 (W™ (w7 (1)) =
w ().

(4) Foreach pi; € LX and p; € LY, w™ (V,¢p i) =
/\ie[ w™ (ps) and WH(\/jeJ pj) = /\jer{;(pj)'

) If w™(w™ (1)) = pi, thenw™ (W™ (Ajep i) =
/\ie[ Hi

(6) If (W™ (w™(p))) = pj, thenw™ (W™ (A;e;05)) =
/\je] Pj-

Proof. (1) Since w—(u)
w™ (W™ ()
w™ (W ().

(2 Since 1 < po < W (W (k2)), W (p2) <
w”(p1). Since w”(w T (p2)) = p2 = p1, W (p1) =
w™(p2).

(3) It easily proved from (1) and (2).

(4 By 9, " (Vigr i) < Nigrw ™ (i). Since
w (i) = Njerw™ (1) implies w™ (A;c;w™ (13)) =
pi, we have \/,.; i < wT(A;e;w ™ (1i)).  Hence
W (Vier i) = Nier w™ (1)

(5) By (1), w™ (w™ (A i) = A i and by (2),

Awi= N (@ () = 0™ @ (A w)-

i€l i€l i€l

Hence, w™ (W™ (Ajes 14)) = Nicr Ha-
(6) Itissimilarly proved as (5).

< w7 (u), we have p <
Since w(p) < w(p), we have p <

O
Example 24. Let X = {a,b,c}, Y = {z,y,2,w} and
L = {0,1} be sets. Definew™ : P(X) — P(Y) and
wT:PY)— P(X)as

w_>(®) = Y;w—)({a}) = {x,y},w*({b}) = {y,w},

108

w™({e}) = {zw},w"({a,0}) = {y},
w” ({b,c}) = {w},w"({a,c}) =wT(X) = 0.
w™(0) = X,w™ ({w}) = {b,c},
w™({z}) ={c} =w™ ({z,w}),
w™({y}) = {a, b}, 0™ ({y,w}) = {b} =w™ ({z,y}),
w™({z}) = {a},w™ ({y,2}) =w™ ({y, 2,w}) =0,
w™({z,w}) =w” ({7, 2}) = ({z,2,w}) =0,
w™({z,y,w}) =w”({z,y,2}) =0 (V) = 0.

Then (w™,w*") is an antitone Galios connection. Thus,
we obtain formal concepts

{@,Y), ({a}, {=,u}), ({0} {y, w}), ({c}, {z, w})

({b; c}, {w}), ({a, b}, {y}), (X, 0)}
Ingenerd, {z,w} =w~ ({a,c} N{b,c}) # w~({a,c}) U
w™ ({b,c}) = {w}-

Definition 2.5. An operator ¢~ : LX — LY iscaled
a join-generating operator, denoted by ¢— € J(X,Y), if
¢~ (Vier M) = Vier @ (i), for {A;bier € L.

An operator v~ : LX — LY is called a meet-
generating operator, denoted by ¢v— € M(X,Y), if
U7 (Nier M) = Nier ¥~ (M), for {Ai}ier € LY.

An operator w— : LX — LY is caled an order
reverse-generating operator, denoted by w— € K(X,Y),
if wé(\/ier‘ )\1) = /\ieF w*()\i), for {/\i}iEF c LX.

Theorem 2.6. For v~ € K(X,Y), Define functions
o6 LY — LY adw, 65,65 LY — LY as
follows: foral A € LX,p e LY,

w(p) = VA e LY [w™ () = p}
¢ (1) = (W™ ()", ¢ (p) =w™(p7)
& () = Nr e LX [w(W) > p},
&) =\{peL £ (p) <}

Then the following properties hold:

D w™ e K, X)withw™(A) > p s w(p) > A
foral A € LX and p € LY. Furthermore, w™(a ® \) <
a— w-N)iffa - w(p) < w(a® p). Similarly,
wT (@A) <a—-wTNiffa = w7 (p) w7 (a®p).

(2) The pair (w™,w™) is an antitone Galois connec-
tion and (w— (w™~(A)),w (X)) foral A € L* areformal
concepts.

(3) Thepair (¢, ¢, ) isan isotone Galois connection
and (65 (65 (V). 65" (V) = (@ (™ (N),w™ (\)") for
al A € LX are attribute oriented concepts.

@w (a0 < a — w(n)iff a7 () <
05 (@@ p)iff a — 65 (p) < 65 (a — p).



(5) &5 : LY — LX isajoin-generating function such
thet £ (p) = (v (p))* and

W) 2 p e w(p) 2 A & €5 (p) S A

Moreover, w " (a @A) > a = w (N iff a ® & (p) <

£ (@@ p).
(6) &5 : L — LY isameet-generating function such
that £ (\) = w— (\*) and

W) 2 pewT(p) 2N (DS e p<S(N).

Moreover, w (@ ® A) > a — w () iff a — 57 (N) <
£ (@ —=A).
(7) The pair (£7,£.) is an isotone Galois connection

and (£57(p), €57 (857 (p)) = (W™ (p)",w™ (W™ (p))) for
al p € LY are object oriented concepts.

Proof. (1) Sincew™ € K(X,Y)andw (p) = V{\ €
L* | w™(A\) > p}, we have
wT(A) Zpew(p) = A
Moreover, w~ € K(Y, X) from
/\ier (pi) 2pn Sw(p)=p, Viel

w7 () = pi, Viel
w™ (1) = Vier pis
W™ (Vier pi) 2 .

Hence w™ (Ver pi) = Aser 0™ (p2).

Letw™ (@A) <a—w”(N). Foru<a—w(p),
poa<w (p)iffw” (Lo a)>p Sncew™ (a® p) <
a— w(p),a = w(p) > piffw”(u) > aopiff
wT(a®@p) > p Hencea — w(p) < w (a® p).
Conversdly, it similarly proved.

(2) By (1), since (w—,w*) is an antitone Galois con-
nection, (w™ (w—(A)),w™(\)) are formal concepts from
Theorem 2.3(3).

(3) It follows from ¢’ (A) <
iff w=(\) > p* iff wT(p*) >
Moreover, ¢ (65 (65 (\) = ¢
oW W (\) =
@) =5 (V)

@ (a0 < a— w(piff (0 (ao )’
(@ —w™(w)* iffa® oy (1) < o5 (a®p).

Letor — ¢35 (p) < ¢ (a — p). For ¢ (e © p) < p,
a®A< @5 (p). Then A < a — 65 (p) < o5 (a0 — p)
implies ¢’ () < o — p. Hence o ® ¢ (N\) < p. Thus,
a® ¢ (N < ¢ (e ®N). Conversdly, it is similarly
proved.

(5) We have

& () = A € LX |w= (V) = p}
= (VI e X o () 2 p}) = (@ ()"

l/\\/\
i ><

\Y)
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Wehave ¢ € J(Y, X) from:

Vieréo (pi) <A o &65(pi) <A, Viel
wo(A) > pi, Viel
~ w—>(/\*) Z Viel" Pis
& €5 Voer pi) S

w@oAN) Z2a—w (N)iffo" (a0 p) <a— w(p)
iff (W= (a © p)* > (@ — w(p)" iff a®E(p) <
£ (@@ p).

(6) We have

&) =V{peL¥ & (p) <A}
=V{pe LY |w~(\)=p} =w(

£ (= A)

()

([T
5

Corollary 2.7. Let P(X) and P(Y") befamilies of subsets
of XandY. Letw™ : P(X) — P(Y) be an operator
with w™ (U A4;) = Nw(4;) for A; € P(X). Define
functions ¢,¢, : P(X) — P(Y) and w™,¢5,&5

P(Y) — P(X)asfollows: foral A e P(X),B € P(Y),
w™(B)=|J{A € P(X) |w™(4) > B}
¢>3(A) = (w7 (A4)% ¢ (B) =w™ (B°)

€5 (B) = (A€ P(X) |w(4%) > B},
& A ={BeP) | (B) C A}

Then the followi ng propertl es hold:

D) w=(UBi) = Nw(B;) for B; € P(Y) with
w”(A) > B & w (B )>AforaJIAeP( ) and
B e P(Y).

(2) Thepair (w™,w ") isan antitone Galois connection
and (W (w™(A4)),w™(A)) foral A € P(X) areforma

concepts.
(3) Thepair (¢_, ¢, ) isan isotone Galois connection
and (¢S (¢, (A)), ¢ (A)) areattribute oriented concepts.
A& P(Y) — P(X)isaunion-preserving function
suchthat ¢ (B) = (w (B))¢ and

w7 (A% D B & w™

®) & P(X
functionsuchthat £ 7 (A) = w™

(B) D A° & ¢ (B) C A

) — P(Y) is an intersection-preserving
(A°) and

wT(A°) D B& w™(B) D A
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& E(B)C Ae BC &y (A).

(6) The pair (£5,£.") is an isotone Galois connection
and (¢57(B),&,(¢5(B))) for al B € P(Y) are object
oriented concepts.

Example 28 Let X = {.%‘1,3?2,373}, Y = {yl,yg,yg}
and L = {0,1} be sets. Defineafunction f : X — Y as
follows:

f(z1) = f(w2) = y1, f(x3) = 92
Definew™ : P(X) — P(Y) asw™ (A4) = {y2}U(f(4));
w” (0) =Y,w ({z1}) = w7 ({z2}) = {v2, 53},
w™ ({z3}) =Y, w7 ({21, 22}) = {v2, 93},
w™ ({@2,23}) = w ({z1,23}) = w7 (X) = {y2, y3}-
wT(0) =w” ({y2}) =w” ({y2,43}) =™ ({y3}) = X,
w™({y1}) =0 ({y1,y3}) = {=s},
w” ({y1,92}) = wT (V) = {as}.

Thus, we obtain attribute  oriented
(W™ (w™ (), w—(u)) asfollows:

{({zs},Y), (X, {y2,y3})}
() 67 (A) = {y1,y3} N f(A). Then
¢, (0) = 0,05 ({z1}) = {n}, 0o ({z2}) = {mn},
¢ ({ws}) = 0,0, ({z1, 22}) = {wn},
¢ ({2, 23}) = o ({21, 23}) = 65 (X) = {y }-
oo (V) = o5 ({1, 3}) = X,
oo ({yn}) = o5 ({y1,92}) = X,

concepts

¢o (Y2, y3}) = 05 ({42}) = o5 ({ys}) = 65 (0) = {ws}.

Thus, we obtain attribute oriented concepts
(05 (05 (1)), 65 (1)) esfollows:

{({z3},0}), (X, {m D)}

) Since {7 (A) =w (A°), 65 (B) = (w™(B))",
£ (X) =Y. & ({22, 23}) = {y2, 93},
&z as}) ={v2, u3} &0 ({z1,22}) =Y
& ({zs}) = {v2, 43},

& ({z}) =& ({z2}) = 657 (0) = {y2, 93}

& 0) =& (ye}) = & ({y2,u3}) = &5 ({ys}) =0,
& Q) = &5 ({yn,93}) = {21, 22}
&y ye}) = &5 (Y) = {21, 22}

Thus, we obtain attribute oriented concepts
(60" (n), €57 (€57 (1)) esfollows:

{({z1, 22}, Y), (0, {y2,y3})}
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Theorem 2.9. Let (X,Y, R) be afuzzy context. Define a
function wy : LX — LY asfollows:

wE M) =\ (@) = R(z,y)).

zeX

Then we have the following properties:

() wy € K(X,Y) and wg has aright adjoint map-
ping wy with

wr ()(x) = N (py) — R(z,y)).

yey

Moreover, wi; (wg (A) > A and wy (wi; (p)) > p for al
AeLXandpe LY.

(2 (wg,wp) is an isotone Galois connections and
(wiz (wg'(N),wr (V) forall X € LX areformal concepts.
= w_)

@) wr(@©A) = a = wg(}) amr(A) and
wi (@ ©®p) = a = wi(p) = wi_glp), foral A €
LX,pe LY.

(4) ¢ (1) = (wg ()" and g (p) = wg (p7) where

b (@) = \/ (@) © R*(2,y)),

yey

0on(0)@) = N (B (2,9) — py)).

yey

(5) The pair (¢, ¢,,) is an isotone Galois connec-
tionand (¢, (955 (M), ¢ (\)) are attribute concepts.

(6)

Enp)@) =\ (ply) © R (2,y)),

yey

EnNW) = N (B (2,9) = M)

zeX

(7) Thepair (£, &5;.) isanisotone Galois connection
and (&5, (p), &0 (€5, (p))) for @l p € LY are object ori-
ented concepts.



Proof. (1) Sincewy (V;ep i) (y) =

Rwy) = Aer(Aexil@) — Ry) =
Nier wr (M) (y), wr has a right adjoint mapping wg
asfollows:

wr (p)(2)

&
27

(wr () ()

yev iwr M) — Rlz,y)}
er{/\xeX()‘(‘T) - R(x,y)) - R(Q?,y)}
yevi(A(@) = R(z,y)) — R(z,y)}

VIV I
>
)

wr (P)(Y)

rex1Wr (R)(p)(z) — R(z,y)}
cex1N\yey (p(y) = R(z,y)) — R(z,y)}
xﬁx{( p(y) — R(x,y)) — R(z,y)}

&
]

VIV Il
b >>>

(
(3) By Lemma 1.3(6), we prove:

wr (@O MN)(y) =

))( by Lemma 1.3(7)).

Pon (P) (@) = Wi () (2)
= Vyey ("(y) — R(z,y))(by Lemma 1.3(7))

= Nyey (B*(z,y) — p(v)).
(5) It follows from Theorem 2.6(3).
(6)

Corn(W)(y) =wr (p")(y)
= Npex (W (z) — R(z,y))
= Noex (R(z,y)* — p(x)).

(7) 1t follows from Theorem 2.6(7).

Antitone Galois Connections and Formal Concepts

Nsex(Vier Ai(z) — Corollary 2.10. Let X and Y besetsand R C X x Y.

Defineafunction wy : P(X) — P(Y) asfollows:
wr(A)={yeY |[(FreX)(x € A— (z,y) € R)}

Then we have the following properties:

() wy € K(X,Y) and wy has aright adjoint map-
ping wi; with

wr (B)={z € X |(FyeY)(yeB— (z,y) € R)}.
Moreover, wi; (wg (4)) D A and wy (wi (B)) D B for
dlAe P(X)and B € P(Y).

(2 (wg,wp) is an isotone Galois connections and
(wi (wg (A)),wy (A4)) foral A € P(X) areformal con-
cepts.

(3 o5, (A) =

where

(wg (A)¢ and 65, (B) = wg (B°)
Pun(A) ={y €Y | Bz € A)((z € A)A((2,y) € B))},

¢on(B) ={z € X | (Vy € Y)((z,y) € R* -y € B)}.

(5) The pair (¢, #5,,) is an isotone Galois connec-
tionand (¢, (¢, (A4)), qﬁ;‘R(A)) are attribute concepts.
(6)

§on(B) ={z e X | 3y € B)((y € B) A (=,

Son(A) ={yeY [ (Vo e X)((z,y) e R —z € A)}

(7) Thepair (£, &5;.) isanisotone Galois connection
and ({5, (B), &5 (€5,.(B))) fordl B € P(Y') are object
oriented concepts.

y) € R},

Example 2.11. Let X = {a,b,c}, Y = {z,y,2z,w} and
L = {0,1} besets. Definearelation R asfollows:

R ={(a,2),(a,y), (b,y), (b,w), (¢, 2), (c,w)}.
(1) Definewy : P(X) — P(Y)aswi (A) ={y €Y |
a € A— (a,y) € R};
wr (0) =Y, wg ({a}) = {z,y}, wg ({0}) = {y, w},
wr ({c}) = {z,w},wr ({a,0}) = {y},
Wi (Ibye}) = {wh i ({a, ) = wig (X) = 0.
Weobtainwy (B) ={a € X |y € B— (a,y) € R};
wg (0) = X,wi ({w}) = {b,c},
wr ({2}) = {c} = wr ({z,w}),
wi ({y}) = {a, b}, wi ({y, w}) = {b} = wi ({2, y}),
wg({ﬁ}) = {CL}JUE({y, Z}) = w;({yvsz}) =0,
WE({xa ’LU}) = wg({$7 Z}) = wg({x7 z7w}) =0,

wg({x,y,w}) = w‘g({w,y,z}) = WE(Y) =0,
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Thus, we obtain formal concepts

{(0,Y), ({a} {z, y}), {b}, {y, w}), ({c} {z,w})
({6, ¢}, {w}), ({a, b}, {y}) (X, 0)}
(2) Weobtain arelation R* = R¢ asfollows:
R® = {(a,2), (a,w), (b,2), (b, 2), (¢, x), (¢, y) }.
We obtain ¢, : P(X) — P(Y) as
05, (A) ={yeY|(BacA)acAA(ay) € R))}

b (0) = 0,05, ({a}) = {z,w}, 65, ({b}) = {z, 2},
b)) = {z, 4}, ({a, b)) = {z, 2, w},
bur({bsc}) = {2,y 2}, 0, ({a, ¢}) = ¢, (X) = Y

Weobtain ¢, (B) ={ac X |y € B — (a,y) € R};
¢on(0) = 00, ({2}) = 00, ({w}) = 5, ({z}) = 0,
bop({w}) = o5, ({z, w}) =0,
¢o,({y,2}) = 65, ({y, w}) =,
bor{:y}) = 05, ({2, g, w}) = {c}, o, ({2, 0}) = {b},
P (V) = X, 00, ({2, 2}) = {b}, 6, ({y, 2, w}) = {a},
bon({z, 2,w}) = {a,b}, 60, ({2, y, 2}) = {b, c}-

Thus, we obtain attribute oriented concepts

{©,0), {c}, {=, y}), ({b}.{z, 2}), ({a} {2, w}),

({0, ¢} {=z,y, 2}), {a, b}, {z, 2, w}) (X, Y)}
() Weobtan {7 (B) = {a € X | 3y € B)((y €
B) A ((a,y) € )}

§on(0) = 0,65, ({w}) = {a}, &5, ({y}) = {c},
on({2}) = &0, ({7, w}) = {a, b}, 65, ({y, w}) = {a, c},
Son({a}) =60, ({my}) = {b,c}, &, ({y, 2}) = X
Son{y 2 w}) =60, ({z,w}) = &0, ({2, 2}) = X,

Eon({o, z,w}) = &5, ({o,y,w}) = X,
Son{my,2h) = 65, (V) = X.
on(A) ={y €Y |((a,y) € R* — (a € A)};

WR

§orn(0) = &, ({01) = 0,£.,, ({c}) = {v},

Son({l,ch) = {2y}, €0, ({a}) = {w},
Son({be}) =A{z,y} &0 ({a, c}) = {y, w}, (X)) =Y.

Thus, we obtain object oriented concepts

{(,0), (e} {w}), ({0, ¢} {z, y}), ({a}, {w})
({a, e}, {y, w}), ({a, 0}, {z,w}), (X, Y)}
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