Antitone Galois Connections and Formal Concepts

Jung Mi Ko¹ and Yong Chan Kim²

Department of Mathematics, Gangneung-Wonju University, Gangneung, 201-702, Korea

Abstract

In this paper, we investigate the properties of antitone Galois connection and formal concepts. Moreover, we show that order reverse generating maps induce formal, attribute oriented and object oriented concepts on a complete residuated lattice.

Key Words: Complete residuated lattices, order reverse generating maps, isotone (antitone) Galois connetion, formal (resp. attribute oriented, object oriented) concepts

1. Introduction and preliminaries

Formal concept analysis is an important mathematical tool for data analysis and knowledge processing [1-4,8,10]. A fuzzy context consists of (X, Y, R) where X is a set of objects, Y is a set of attributes and R is a relation between X and Y. Bělohlávek [1-4] developed the notion of formal concepts with $R \in L^{X \times Y}$ on a complete residuated lattice L.

In this paper, we investigate the properties of antitone Galois connections. Using their properties, we define formal, attribute oriented and object oriented concepts on a complete residuated lattice. Moreover, we show that order reverse generating maps induce formal, attribute oriented and object oriented concepts on a complete residuated lattice.

Definition 1.1. [9] A triple (L, \leq, \odot) is called a *complete* residuated lattice iff it satisfies the following conditions:

- (L1) $L = (L, \leq, 1, 0)$ is a complete lattice where 1 is the universal upper bound and 0 denotes the universal lower bound;
 - (L2) $(L, \odot, 1)$ is a commutative monoid;
 - (L3) ⊙ is distributive over arbitrary joins, i.e.

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

Define an operation \rightarrow as $a \rightarrow b = \bigvee \{c \in L \mid a \odot c \leq a \}$ b}, for each $a, b \in L$.

Remark 1.2. [9] (1) Each frame (L, \leq, \land) is a complete residuated lattice.

Manuscript received Nov. 24, 2009; revised May. 7, 2010; Accepted May. 8, 2010.

This work was supported by sabbatical year research funds from Gangneung-Wonju National University in 2009.

- (2) The unit interval with a left-continuous t-norm t, ([0,1], <, t), is a complete residuated lattice.
- (3) Define a binary operation \odot on [0,1] by $x \odot y =$ $\max\{0, x+y-1\}$. Then $([0,1], \leq, \odot)$ is a complete residuated lattice.

Let (L, \leq, \odot) be a complete residuated lattice. A order reversing map $*: L \to L$ defined by $a^* = a \to 0$ is called a strong negation if $a^{**} = a$ for each $a \in L$.

In this paper, we assume $(L, \leq, \odot, *)$ is a complete residuated lattice with a strong negation *.

Lemma 1.3. [9] For each $x, y, z, x_i, y_i \in L$, we have the following properties.

- (1) If $y \le z$, $x \odot y \le x \odot z$, $x \to y \le x \to z$ and $z \to x \le y \to x$.
 - (2) $x \odot y \le x \wedge y$.
 - (3) $x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i).$
 - (4) $(\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y).$

 - (5) $\bigwedge_{i \in \Gamma} y_i^* = (\bigvee_{i \in \Gamma} y_i)^*$ and $\bigvee_{i \in \Gamma} y_i^* = (\bigwedge_{i \in \Gamma} y_i)^*$. (6) $(x \odot y) \to z = x \to (y \to z) = y \to (x \to z)$.
 - (7) $x \odot y = (x \rightarrow y^*)^*$ and $x \rightarrow y = y^* \rightarrow x^*$.

2. Antitone Galois connections and formal concepts

Definition 2.1. [5] Let X and Y be two sets. Let $\omega^{\rightarrow}, \phi^{\rightarrow}, \xi^{\rightarrow}: L^{X} \to L^{Y} \text{ and } \omega^{\leftarrow}, \phi^{\leftarrow}, \xi^{\leftarrow}: L^{Y} \to L^{X}$ be operators.

- (1) The pair $(\omega^{\rightarrow}, \omega^{\leftarrow})$ is called *antitone Galois con*nection between X and Y if for $\mu \in L^X$ and $\rho \in L^Y$, $\rho < \omega^{\rightarrow}(\mu)$ iff $\mu < \omega^{\leftarrow}(\rho)$.
- (2) The pair $(\phi^{\rightarrow},\phi^{\leftarrow})$ is called an isotone Galois connection between X and Y if for $\mu \in L^X$ and $\rho \in L^Y$, $\phi^{\rightarrow}(\mu) \leq \rho$ iff $\mu \leq \phi^{\leftarrow}(\rho)$. Moreover, the pair $(\xi^{\leftarrow}, \xi^{\rightarrow})$

is called an isotone Galois connection between X and Y if for $\mu \in L^X$ and $\rho \in L^Y$, $\xi^{\leftarrow}(\rho) \leq \mu$ iff $\rho \leq \xi^{\rightarrow}(\mu)$.

Definition 2.2. Let $\omega^{\rightarrow},\phi^{\rightarrow},\xi^{\rightarrow}$: L^{X} \rightarrow L^{Y} and $\omega^{\leftarrow}, \phi^{\leftarrow}, \xi^{\leftarrow}: L^Y \to L^X$ be functions. A pair $(\mu, \rho) \in$ $L^X \times L^Y$ is called:

- (1) a formal concept if $\rho = \omega^{\rightarrow}(\mu)$ and $\mu = \omega^{\leftarrow}(\rho)$ where $(\omega^{\rightarrow}, \omega^{\leftarrow})$ is an antitone Galios connection,
- (2) an attribute oriented concept if $\rho = \phi^{\rightarrow}(\mu)$ and $\mu = \phi^{\leftarrow}(\rho)$ where $(\phi^{\rightarrow}, \phi^{\leftarrow})$ is an isotone Galios connec-
- (3) an object oriented concept if $\rho = \xi^{\rightarrow}(\mu)$ and $\mu = \xi^{\leftarrow}(\rho)$ where $(\xi^{\leftarrow}, \xi^{\rightarrow})$ is an isotone Galios connec-

Theorem 2.3. Let $\omega^{\rightarrow}: L^X \rightarrow L^Y$ and $\omega^{\leftarrow}: L^Y \rightarrow L^X$ be operators. Let $(\omega^{\rightarrow}, \omega^{\leftarrow})$ be an antitone Galois connection between X and Y. Then the following properties hold:

- (1) For each $\mu \in L^X$ and $\mu \in L^X$, $\mu \leq \omega^{\leftarrow}(\omega^{\rightarrow}(\mu))$ and $\rho \leq \omega^{\rightarrow}(\omega^{\leftarrow}(\rho))$.
- (2) If $\mu_1 \leq \mu_2$, then $\omega^{\rightarrow}(\mu_1) \geq \omega^{\rightarrow}(\mu_2)$. Moreover, if $\rho_1 \leq \rho_2$, then $\omega^{\leftarrow}(\rho_1) \geq \omega^{\leftarrow}(\rho_2)$.
- (3) For each $\mu \in L^X$ and $\rho \in$ $\omega^{\leftarrow}(\omega^{\rightarrow}(\omega^{\leftarrow}(\rho))) = \omega^{\leftarrow}(\rho) \text{ and } \omega^{\rightarrow}(\omega^{\leftarrow}(\omega^{\rightarrow}(\mu))) =$
- (4) For each $\mu_i \in L^X$ and $\rho_j \in L^Y$, $\omega^{\rightarrow}(\bigvee_{i \in I} \mu_i) = \bigwedge_{i \in I} \omega^{\rightarrow}(\mu_i)$ and $\omega^{\leftarrow}(\bigvee_{j \in J} \rho_j) = \bigwedge_{j \in J} \omega^{\leftarrow}(\rho_j)$. (5) If $\omega^{\leftarrow}(\omega^{\rightarrow}(\mu_i)) = \mu_i$, then $\omega^{\leftarrow}(\omega^{\rightarrow}(\bigwedge_{i \in I} \mu_i)) = \omega^{\leftarrow}(\omega^{\rightarrow}(\bigvee_{i \in I} \mu_i)) = \omega^{\leftarrow}(\omega^{\rightarrow}(\bigvee_{i \in I} \mu_i)) = \omega^{\leftarrow}(\omega^{\rightarrow}(\bigvee_{i \in I} \mu_i))$
- (6) If $(\omega^{\leftarrow}(\omega^{\leftarrow}(\rho_i)) = \rho_i$, then $\omega^{\rightarrow}(\omega^{\leftarrow}(\bigwedge_{i \in I} \rho_i)) =$ $\bigwedge_{j\in J} \rho_j$.

Proof. (1) Since $\omega^{\rightarrow}(\mu) \leq \omega^{\rightarrow}(\mu)$, we have $\mu \leq$ $\omega^{\leftarrow}(\omega^{\rightarrow}(\mu))$. Since $\omega^{\leftarrow}(\rho) \leq \omega^{\leftarrow}(\rho)$, we have $\rho \leq$ $\omega^{\rightarrow}(\omega^{\leftarrow}(\rho)).$

- (2) Since $\mu_1 \leq \mu_2 \leq \omega^{\leftarrow}(\omega^{\rightarrow}(\mu_2)), \ \omega^{\rightarrow}(\mu_2) \leq$ $\omega^{\rightarrow}(\mu_1)$. Since $\omega^{\rightarrow}(\omega^{\leftarrow}(\rho_2)) \geq \rho_2 \geq \rho_1, \ \omega^{\leftarrow}(\rho_1) \geq$
 - (3) It easily proved from (1) and (2).
- (4) By (2), $\omega^{\rightarrow}(\bigvee_{i\in I}\mu_i) \leq \bigwedge_{i\in I}\omega^{\rightarrow}(\mu_i)$. Since $\omega^{\rightarrow}(\mu_i) \geq \bigwedge_{i\in I}\omega^{\rightarrow}(\mu_i)$ implies $\omega^{\leftarrow}(\bigwedge_{i\in I}\omega^{\rightarrow}(\mu_i)) \geq \mu_i$, we have $\bigvee_{i\in I}\mu_i \leq \omega^{\leftarrow}(\bigwedge_{i\in I}\omega^{\rightarrow}(\mu_i))$. Hence $\omega^{\rightarrow}(\bigvee_{i\in I}\mu_i)\geq \bigwedge_{i\in I}\omega^{\rightarrow}(\mu_i).$

(5) By (1), $\omega^{\leftarrow}(\omega^{\rightarrow}(\wedge \mu_i)) \geq \wedge \mu_i$ and by (2),

$$\bigwedge_{i \in I} \mu_i = \bigwedge_{i \in I} \omega^{\leftarrow}(\omega^{\rightarrow}(\mu_i)) \ge \omega^{\leftarrow}(\omega^{\rightarrow}(\bigwedge_{i \in I} \mu_i)).$$

Hence, $\omega^{\leftarrow}(\omega^{\rightarrow}(\bigwedge_{i\in I}\mu_i)) = \bigwedge_{i\in I}\mu_i$. (6) It is similarly proved as (5).

Example 2.4. Let $X = \{a, b, c\}, Y = \{x, y, z, w\}$ and $L=\{0,1\}$ be sets. Define $\omega^{\rightarrow}:P(X)\to P(Y)$ and $\omega^{\leftarrow}: P(Y) \to P(X)$ as

$$\omega^{\to}(\emptyset) = Y, \omega^{\to}(\{a\}) = \{x, y\}, \omega^{\to}(\{b\}) = \{y, w\},\$$

$$\omega^{\rightarrow}(\{c\}) = \{z,w\}, \omega^{\rightarrow}(\{a,b\}) = \{y\},$$

$$\omega^{\rightarrow}(\{b,c\}) = \{w\}, \omega^{\rightarrow}(\{a,c\}) = \omega^{\rightarrow}(X) = \emptyset.$$

$$\omega^{\leftarrow}(\emptyset) = X, \omega^{\leftarrow}(\{w\}) = \{b,c\},$$

$$\omega^{\leftarrow}(\{z\}) = \{c\} = \omega^{\leftarrow}(\{z,w\}),$$

$$\omega^{\leftarrow}(\{y\}) = \{a,b\}, \omega^{\leftarrow}(\{y,w\}) = \{b\} = \omega^{\leftarrow}(\{x,y\}),$$

$$\omega^{\leftarrow}(\{x\}) = \{a\}, \omega^{\leftarrow}(\{y,z\}) = \omega^{\leftarrow}(\{y,z,w\}) = \emptyset,$$

$$\omega^{\leftarrow}(\{x,w\}) = \omega^{\leftarrow}(\{x,z\}) = \omega^{\leftarrow}(\{x,z,w\}) = \emptyset,$$

$$\omega^{\leftarrow}(\{x,y,w\}) = \omega^{\leftarrow}(\{x,y,z\}) = \omega^{\leftarrow}(Y) = \emptyset.$$

Then $(\omega^{\rightarrow}, \omega^{\leftarrow})$ is an antitone Galios connection. Thus, we obtain formal concepts

$$\{(\emptyset,Y),(\{a\},\{x,y\}),(\{b\},\{y,w\}),(\{c\},\{z,w\})$$

$$(\{b,c\},\{w\}),(\{a,b\},\{y\}),(X,\emptyset)\}$$

In general, $\{z,w\} = \omega^{\rightarrow}(\{a,c\} \cap \{b,c\}) \neq \omega^{\rightarrow}(\{a,c\}) \cup$ $\omega^{\rightarrow}(\{b,c\}) = \{w\}.$

Definition 2.5. An operator $\phi^{\rightarrow}: L^{X} \rightarrow L^{Y}$ is called a join-generating operator, denoted by $\phi^{\rightarrow} \in J(X,Y)$, if $\begin{array}{c} \phi^{\rightarrow}(\bigvee_{i\in\Gamma}\lambda_i)=\bigvee_{i\in\Gamma}\phi^{\rightarrow}(\lambda_i)\text{, for }\{\lambda_i\}_{i\in\Gamma}\subset L^X.\\ \text{An operator }\psi^{\rightarrow}:\ L^X\ \rightarrow\ L^Y \text{ is called a meet-} \end{array}$

generating operator, denoted by $\psi^{\rightarrow} \in M(X,Y)$, if $\psi^{\rightarrow}(\bigwedge_{i\in\Gamma}\lambda_i) = \bigwedge_{i\in\Gamma}\psi^{\rightarrow}(\lambda_i), \text{ for } \{\lambda_i\}_{i\in\Gamma}\subset L^X.$ An operator $\omega^{\rightarrow}:L^X\to L^Y$ is called an order

reverse-generating operator, denoted by $\omega^{\rightarrow} \in K(X,Y)$, if $\omega^{\rightarrow}(\bigvee_{i\in\Gamma}\lambda_i)=\bigwedge_{i\in\Gamma}\omega^{\rightarrow}(\lambda_i)$, for $\{\lambda_i\}_{i\in\Gamma}\subset L^X$.

Theorem 2.6. For $\omega^{\rightarrow} \in K(X,Y)$, Define functions $\begin{array}{l} \phi_{\omega}^{\rightarrow}, \xi_{\omega}^{\rightarrow} : L^{X} \rightarrow L^{Y} \text{ and } \omega^{\leftarrow}, \phi_{\omega}^{\leftarrow}, \xi_{\omega}^{\leftarrow} : L^{Y} \rightarrow L^{X} \text{ as follows: for all } \lambda \in L^{X}, \rho \in L^{Y}, \end{array}$

$$\omega^{\leftarrow}(\rho) = \bigvee \{ \lambda \in L^X \mid \omega^{\rightarrow}(\lambda) \ge \rho \}$$

$$\phi_{\omega}^{\rightarrow}(\mu) = (\omega^{\rightarrow}(\mu))^*, \ \phi_{\omega}^{\leftarrow}(\rho) = \omega^{\leftarrow}(\rho^*)$$

$$\xi_{\omega}^{\leftarrow}(\rho) = \bigwedge \{ \lambda \in L^X \mid \omega(\lambda^*) \ge \rho \},$$

$$\xi_{\omega}^{\rightarrow}(\mu) = \bigvee \{ \rho \in L^Y \mid \xi_{\omega}^{\leftarrow}(\rho) \le \mu \}$$

Then the following properties hold:

- (1) $\omega^{\leftarrow} \in K(Y, X)$ with $\omega^{\rightarrow}(\lambda) \geq \rho \Leftrightarrow \omega^{\leftarrow}(\rho) \geq \lambda$ for all $\lambda \in L^X$ and $\rho \in L^Y$. Furthermore, $\omega^{\rightarrow}(\alpha \odot \lambda) \leq$ $\alpha \to \omega^{\rightarrow}(\lambda)$ iff $\alpha \to \omega^{\leftarrow}(\rho) \le \omega^{\leftarrow}(\alpha \odot \rho)$. Similarly, $\omega^{\leftarrow}(\alpha \odot \lambda) \leq \alpha \to \omega^{\leftarrow}(\lambda) \text{ iff } \alpha \to \omega^{\rightarrow}(\rho) \leq \omega^{\rightarrow}(\alpha \odot \rho).$
- (2) The pair $(\omega^{\rightarrow},\omega^{\leftarrow})$ is an antitone Galois connection and $(\omega^{\leftarrow}(\omega^{\rightarrow}(\lambda)), \omega^{\rightarrow}(\lambda))$ for all $\lambda \in L^X$ are formal
- (3) The pair $(\phi_\omega^{\to},\phi_\omega^{\leftarrow})$ is an isotone Galois connection and $(\phi^{\leftarrow}_{\omega}(\phi^{\rightarrow}_{\omega}(\lambda)), \phi^{\rightarrow}_{\omega}(\lambda)) = (\omega^{\leftarrow}(\omega^{\rightarrow}(\lambda)), \omega^{\rightarrow}(\lambda)^*)$ for all $\lambda \in L^X$ are attribute oriented concepts.
- $\begin{array}{l} \text{(4) } \omega^{\rightarrow}(\alpha\odot\mu) \, \leq \, \alpha \, \to \, \omega^{\rightarrow}(\mu) \, \, \text{iff} \, \, \alpha\odot\phi^{\rightarrow}_{\omega}(\mu) \, \leq \\ \phi^{\rightarrow}_{\omega}(\alpha\odot\mu) \, \, \text{iff} \, \, \alpha\to\phi^{\leftarrow}_{\omega}(\rho) \leq \phi^{\leftarrow}_{\omega}(\alpha\to\rho). \end{array}$

(5) $\xi_\omega^\leftarrow:L^Y\to L^X$ is a join-generating function such that $\xi_\omega^\leftarrow(\rho)=(\omega^\leftarrow(\rho))^*$ and

$$\omega^{\rightarrow}(\lambda^*) \ge \rho \Leftrightarrow \omega^{\leftarrow}(\rho) \ge \lambda^* \Leftrightarrow \xi^{\leftarrow}_{\omega}(\rho) \le \lambda.$$

Moreover, $\omega^{\rightarrow}(\alpha \odot \lambda) \geq \alpha \rightarrow \omega^{\rightarrow}(\lambda)$ iff $\alpha \odot \xi_{\omega}^{\leftarrow}(\rho) \leq \xi_{\omega}^{\leftarrow}(\alpha \odot \rho)$.

(6) $\xi_{\omega}^{\to}:L^X\to L^Y$ is a meet-generating function such that $\xi_{\omega}^{\to}(\lambda)=\omega^{\to}(\lambda^*)$ and

$$\omega^{\rightarrow}(\lambda^*) \geq \rho \Leftrightarrow \omega^{\leftarrow}(\rho) \geq \lambda^* \Leftrightarrow \xi_{\omega}^{\leftarrow}(\rho) \leq \lambda \Leftrightarrow \rho \leq \xi_{\omega}^{\rightarrow}(\lambda).$$

Moreover, $\omega^{\rightarrow}(\alpha \odot \lambda) \geq \alpha \rightarrow \omega^{\rightarrow}(\lambda)$ iff $\alpha \rightarrow \xi_{\omega}^{\rightarrow}(\lambda) \leq \xi_{\omega}^{\rightarrow}(\alpha \rightarrow \lambda)$.

(7) The pair $(\xi_\omega^\leftarrow, \xi_\omega^\rightarrow)$ is an isotone Galois connection and $(\xi_\omega^\leftarrow(\rho), \xi_\omega^\rightarrow(\xi_\omega^\leftarrow(\rho))) = (\omega^\leftarrow(\rho)^*, \omega^\rightarrow(\omega^\rightarrow(\rho)))$ for all $\rho \in L^Y$ are object oriented concepts.

Proof. (1) Since $\omega^{\rightarrow} \in K(X,Y)$ and $\omega^{\leftarrow}(\rho) = \bigvee \{\lambda \in L^X \mid \omega^{\rightarrow}(\lambda) \geq \rho\}$, we have

$$\omega^{\rightarrow}(\lambda) \ge \rho \Leftrightarrow \omega^{\leftarrow}(\rho) \ge \lambda.$$

Moreover, $\omega^{\leftarrow} \in K(Y, X)$ from

$$\begin{split} \bigwedge_{i \in \Gamma} \omega^{\leftarrow}(\rho_i) \geq \mu & \Leftrightarrow \omega^{\leftarrow}(\rho_i) \geq \mu, \ \forall i \in \Gamma \\ & \Leftrightarrow \omega^{\rightarrow}(\mu) \geq \rho_i, \ \forall i \in \Gamma \\ & \Leftrightarrow \omega^{\rightarrow}(\mu) \geq \bigvee_{i \in \Gamma} \rho_i, \\ & \Leftrightarrow \omega^{\leftarrow}(\bigvee_{i \in \Gamma} \rho_i) \geq \mu. \end{split}$$

Hence $\omega^{\leftarrow}(\bigvee_{i\in\Gamma}\rho_i)=\bigwedge_{i\in\Gamma}\omega^{\leftarrow}(\rho_i).$

Let $\omega^{\rightarrow}(\alpha\odot\lambda)\leq\alpha\rightarrow\omega^{\rightarrow}(\lambda)$. For $\mu\leq\alpha\rightarrow\omega^{\leftarrow}(\rho)$, $\mu\odot\alpha\leq\omega^{\leftarrow}(\rho)$ iff $\omega^{\rightarrow}(\mu\odot\alpha)\geq\rho$. Since $\omega^{\rightarrow}(\alpha\odot\mu)\leq\alpha\rightarrow\omega^{\rightarrow}(\mu)$, $\alpha\rightarrow\omega^{\rightarrow}(\mu)\geq\rho$ iff $\omega^{\rightarrow}(\mu)\geq\alpha\odot\rho$ iff $\omega^{\leftarrow}(\alpha\odot\rho)\geq\mu$. Hence $\alpha\rightarrow\omega^{\leftarrow}(\rho)\leq\omega^{\leftarrow}(\alpha\odot\rho)$. Conversely, it similarly proved.

- (2) By (1), since $(\omega^{\rightarrow}, \omega^{\leftarrow})$ is an antitone Galois connection, $(\omega^{\leftarrow}(\omega^{\rightarrow}(\lambda)), \omega^{\rightarrow}(\lambda))$ are formal concepts from Theorem 2.3(3).
- (3) It follows from $\phi_{\omega}^{\rightarrow}(\lambda) \leq \rho$ iff $(\omega^{\rightarrow}(\lambda))^* \leq \rho$ iff $\omega^{\rightarrow}(\lambda) \geq \rho^*$ iff $\omega^{\leftarrow}(\rho^*) \geq \lambda$ iff $\phi_{\omega}^{\leftarrow}(\rho) \leq \lambda$. Moreover, $\phi_{\omega}^{\rightarrow}(\phi_{\omega}^{\leftarrow}(\phi_{\omega}^{\rightarrow}(\lambda))) = \phi_{\omega}^{\rightarrow}(\phi_{\omega}^{\leftarrow}((\omega^{\rightarrow}(\lambda))^*)) = (\omega^{\rightarrow}(\omega^{\leftarrow}(\omega^{\rightarrow}(\lambda)))^* = (\omega^{\rightarrow}(\lambda)))^* = (\omega^{\rightarrow}(\lambda))$
- $(4) \ \omega^{\rightarrow}(\alpha \odot \mu) \leq \alpha \to \omega^{\rightarrow}(\mu) \text{ iff } (\omega^{\rightarrow}(\alpha \odot \mu))^* \geq (\alpha \to \omega^{\rightarrow}(\mu))^* \text{ iff } \alpha \odot \phi_{\omega}^{\rightarrow}(\mu) \leq \phi_{\omega}^{\rightarrow}(\alpha \odot \mu).$

Let $\alpha \to \phi_{\omega}^{\leftarrow}(\rho) \leq \phi_{\omega}^{\leftarrow}(\alpha \to \rho)$. For $\phi_{\omega}^{\rightarrow}(\alpha \odot \mu) \leq \rho$, $\alpha \odot \lambda \leq \phi_{\omega}^{\leftarrow}(\rho)$. Then $\lambda \leq \alpha \to \phi_{\omega}^{\leftarrow}(\rho) \leq \phi_{\omega}^{\leftarrow}(\alpha \to \rho)$ implies $\phi_{\omega}^{\rightarrow}(\lambda) \leq \alpha \to \rho$. Hence $\alpha \odot \phi_{\omega}^{\rightarrow}(\lambda) \leq \rho$. Thus, $\alpha \odot \phi_{\omega}^{\rightarrow}(\lambda) \leq \phi_{\omega}^{\rightarrow}(\alpha \odot \lambda)$. Conversely, it is similarly proved.

(5) We have

$$\begin{split} \xi^{\leftarrow}_{\omega}(\rho) &= \bigwedge \{\lambda \in L^X \mid \omega^{\rightarrow}(\lambda^*) \geq \rho \} \\ &= \Big(\bigvee \{\lambda^* \in L^X \mid \omega^{\rightarrow}(\lambda^*) \geq \rho \}\Big)^* = (\omega^{\leftarrow}(\rho))^*. \end{split}$$

We have $\xi_{\omega}^{\leftarrow} \in J(Y,X)$ from:

$$\begin{split} \bigvee_{i \in \Gamma} \xi_{\omega}^{\leftarrow}(\rho_i) &\leq \lambda \quad \Leftrightarrow \xi_{\omega}^{\leftarrow}(\rho_i) \leq \lambda, \quad \forall i \in \Gamma \\ &\Leftrightarrow \omega^{\rightarrow}(\lambda^*) \geq \rho_i, \quad \forall i \in \Gamma \\ &\Leftrightarrow \omega^{\rightarrow}(\lambda^*) \geq \bigvee_{i \in \Gamma} \rho_i, \\ &\Leftrightarrow \xi_{\omega}^{\leftarrow}(\bigvee_{i \in \Gamma} \rho_i) \leq \lambda. \end{split}$$

 $\omega^{\rightarrow}(\alpha \odot \lambda) \geq \alpha \rightarrow \omega^{\rightarrow}(\lambda) \text{ iff } \omega^{\leftarrow}(\alpha \odot \rho) \leq \alpha \rightarrow \omega^{\leftarrow}(\rho)$ iff $(\omega^{\leftarrow}(\alpha \odot \rho))^* \geq (\alpha \rightarrow \omega^{\leftarrow}(\rho))^* \text{ iff } \alpha \odot \xi_{\omega}^{\leftarrow}(\rho) \leq \xi_{\omega}^{\leftarrow}(\alpha \odot \rho).$

(6) We have

$$\begin{array}{ll} \xi_\omega^\to(\lambda) &= \bigvee \{\rho \in L^Y \mid \xi_\omega^\leftarrow(\rho) \leq \lambda \} \\ &= \bigvee \{\rho \in L^Y \mid \omega^\to(\lambda^*) \geq \rho \} = \omega^\to(\lambda^*). \end{array}$$

$$\begin{array}{ll} \xi_{\omega}^{\rightarrow}(\alpha \rightarrow \lambda) &= \omega^{\rightarrow}((\alpha \rightarrow \lambda)^*) = \omega^{\rightarrow}(\alpha \odot \lambda^*) \\ &\geq \alpha \rightarrow \omega^{\rightarrow}(\lambda^*) = \alpha \rightarrow \xi_{\omega}^{\rightarrow}(\lambda). \end{array}$$

(7)

$$\begin{array}{ll} \xi_\omega^\leftarrow(\xi_\omega^\rightarrow(\xi_\omega^\leftarrow(\rho))) &= \xi_\omega^\leftarrow(\xi_\omega^\rightarrow((\omega^\leftarrow(\rho))^*) \\ &= \xi_\omega^\leftarrow(\omega^\rightarrow(\omega^\leftarrow(\rho))) \\ &= (\omega^\leftarrow(\omega^\rightarrow(\omega^\leftarrow(\rho)))^* \\ &= (\omega^\leftarrow(\rho))^* = \xi_\omega^\leftarrow(\rho) \end{array}$$

Corollary 2.7. Let P(X) and P(Y) be families of subsets of X and Y. Let $\omega^{\rightarrow}: P(X) \rightarrow P(Y)$ be an operator with $\omega^{\rightarrow}(\bigcup A_i) = \bigcap \omega^{\rightarrow}(A_i)$ for $A_i \in P(X)$. Define functions $\phi_{\omega}^{\rightarrow}, \xi_{\omega}^{\rightarrow}: P(X) \rightarrow P(Y)$ and $\omega^{\leftarrow}, \phi_{\omega}^{\leftarrow}, \xi_{\omega}^{\leftarrow}: P(Y) \rightarrow P(X)$ as follows: for all $A \in P(X)$, $B \in P(Y)$,

$$\omega^{\leftarrow}(B) = \bigcup \{ A \in P(X) \mid \omega^{\rightarrow}(A) \supset B \}$$

$$\phi_{\omega}^{\rightarrow}(A) = (\omega^{\rightarrow}(A))^{c}, \ \phi_{\omega}^{\leftarrow}(B) = \omega^{\leftarrow}(B^{c})$$

$$\xi_{\omega}^{\leftarrow}(B) = \bigcap \{ A \in P(X) \mid \omega(A^{c}) \geq B \},$$

$$\xi_{\omega}^{\rightarrow}(A) = \bigcup \{ B \in P(Y) \mid \xi_{\omega}^{\leftarrow}(B) \subset A \}$$

Then the following properties hold:

- (1) $\omega^{\leftarrow}(\bigcup B_i) = \bigcap \omega^{\leftarrow}(B_i)$ for $B_i \in P(Y)$ with $\omega^{\rightarrow}(A) \geq B \Leftrightarrow \omega^{\leftarrow}(B) \geq A$ for all $A \in P(X)$ and $B \in P(Y)$.
- (2) The pair $(\omega^{\rightarrow}, \omega^{\leftarrow})$ is an antitone Galois connection and $(\omega^{\leftarrow}(\omega^{\rightarrow}(A)), \omega^{\rightarrow}(A))$ for all $A \in P(X)$ are formal concepts.
- (3) The pair $(\phi_{\omega}^{\rightarrow}, \phi_{\omega}^{\leftarrow})$ is an isotone Galois connection and $(\phi_{\omega}^{\leftarrow}(\phi_{\omega}^{\rightarrow}(A)), \phi_{\omega}^{\rightarrow}(A))$ are attribute oriented concepts.
- (4) $\xi_\omega^\leftarrow: P(Y)\to P(X)$ is a union-preserving function such that $\xi_\omega^\leftarrow(B)=(\omega^\leftarrow(B))^c$ and

$$\omega^{\rightarrow}(A^c) \supset B \Leftrightarrow \omega^{\leftarrow}(B) \supset A^c \Leftrightarrow \xi_{\omega}^{\leftarrow}(B) \subset A.$$

(5) $\xi_{\omega}^{\rightarrow}:P(X)\to P(Y)$ is an intersection-preserving function such that $\xi_{\omega}^{\rightarrow}(A)=\omega^{\rightarrow}(A^c)$ and

$$\omega^{\rightarrow}(A^c) \supset B \Leftrightarrow \omega^{\leftarrow}(B) \supset A^c$$

109

$$\Leftrightarrow \xi_{\omega}^{\leftarrow}(B) \subset A \Leftrightarrow B \subset \xi_{\omega}^{\rightarrow}(A).$$

(6) The pair $(\xi_{\omega}^{\leftarrow}, \xi_{\omega}^{\rightarrow})$ is an isotone Galois connection and $(\xi_{\omega}^{\leftarrow}(B), \xi_{\omega}^{\rightarrow}(\xi_{\omega}^{\leftarrow}(B)))$ for all $B \in P(Y)$ are object oriented concepts.

Example 2.8. Let $X = \{x_1, x_2, x_3\}$, $Y = \{y_1, y_2, y_3\}$ and $L = \{0, 1\}$ be sets. Define a function $f: X \to Y$ as follows:

$$f(x_1) = f(x_2) = y_1, \ f(x_3) = y_2.$$

$$\begin{split} \text{Define } \omega^{\to} : P(X) &\to P(Y) \text{ as } \omega^{\to}(A) = \{y_2\} \cup (f(A))^c; \\ \omega^{\to}(\emptyset) &= Y, \omega^{\to}(\{x_1\}) = \omega^{\to}(\{x_2\}) = \{y_2, y_3\}, \\ \omega^{\to}(\{x_3\}) &= Y, \omega^{\to}(\{x_1, x_2\}) = \{y_2, y_3\}, \\ \omega^{\to}(\{x_2, x_3\}) &= \omega^{\to}(\{x_1, x_3\}) = \omega^{\to}(X) = \{y_2, y_3\}. \\ \omega^{\leftarrow}(\emptyset) &= \omega^{\leftarrow}(\{y_2\}) = \omega^{\leftarrow}(\{y_2, y_3\}) = \omega^{\leftarrow}(\{y_3\}) = X, \\ \omega^{\leftarrow}(\{y_1\}) &= \omega^{\leftarrow}(\{y_1, y_3\}) = \{x_3\}, \\ \omega^{\leftarrow}(\{y_1, y_2\}) &= \omega^{\leftarrow}(Y) = \{x_3\}. \end{split}$$

Thus, we obtain attribute oriented concepts $(\omega^{\leftarrow}(\omega^{\rightarrow}(\mu)), \omega^{\rightarrow}(\mu))$ as follows:

$$\{(\{x_3\},Y),(X,\{y_2,y_3\})\}$$

$$(2)\ \phi_{\omega}^{\rightarrow}(A)=\{y_1,y_3\}\cap f(A).\ \text{Then}$$

$$\phi_{\omega}^{\rightarrow}(\emptyset)=\emptyset,\phi_{\omega}^{\rightarrow}(\{x_1\})=\{y_1\},\phi_{\omega}^{\rightarrow}(\{x_2\})=\{y_1\},$$

$$\phi_{\omega}^{\rightarrow}(\{x_3\})=\emptyset,\phi_{\omega}^{\rightarrow}(\{x_1,x_2\})=\{y_1\},$$

$$\phi_{\omega}^{\rightarrow}(\{x_2,x_3\})=\phi_{\omega}^{\rightarrow}(\{x_1,x_3\})=\phi_{\omega}^{\rightarrow}(X)=\{y_1\}.$$

$$\phi_{\omega}^{\leftarrow}(Y)=\phi_{\omega}^{\leftarrow}(\{y_1,y_3\})=X,$$

$$\phi_{\omega}^{\leftarrow}(\{y_1\})=\phi_{\omega}^{\leftarrow}(\{y_1,y_2\})=X,$$

$$\phi_{\omega}^{\leftarrow}(\{y_2,y_3\})=\phi_{\omega}^{\leftarrow}(\{y_2\})=\phi_{\omega}^{\leftarrow}(\{y_3\})=\phi_{\omega}^{\leftarrow}(\emptyset)=\{x_3\}.$$

Thus, we obtain attribute oriented concepts $(\phi_\omega^\leftarrow(\phi_\omega^\rightarrow(\mu)),\phi_\omega^\rightarrow(\mu))$ as follows:

$$\{(\{x_3\},\emptyset\}),(X,\{y_1\})\}$$

$$(3) \operatorname{Since} \xi_{\omega}^{\rightarrow}(A) = \omega^{\rightarrow}(A^{c}), \xi_{\omega}^{\leftarrow}(B) = (\omega^{\rightarrow}(B))^{c},$$

$$\xi_{\omega}^{\rightarrow}(X) = Y, \xi_{\omega}^{\rightarrow}(\{x_{2}, x_{3}\}) = \{y_{2}, y_{3}\},$$

$$\xi_{\omega}^{\rightarrow}(\{x_{1}, x_{3}\}) = \{y_{2}, y_{3}\}, \xi_{\omega}^{\rightarrow}(\{x_{1}, x_{2}\}) = Y$$

$$\xi_{\omega}^{\rightarrow}(\{x_{3}\}) = \{y_{2}, y_{3}\},$$

$$\xi_{\omega}^{\rightarrow}(\{x_{1}\}) = \xi_{\omega}^{\rightarrow}(\{x_{2}\}) = \xi_{\omega}^{\rightarrow}(\emptyset) = \{y_{2}, y_{3}\}.$$

$$\xi_{\omega}^{\leftarrow}(\emptyset) = \xi_{\omega}^{\leftarrow}(\{y_{2}\}) = \xi_{\omega}^{\leftarrow}(\{y_{2}, y_{3}\}) = \xi_{\omega}^{\leftarrow}(\{y_{3}\}) = \emptyset,$$

$$\xi_{\omega}^{\leftarrow}(\{y_{1}\}) = \xi_{\omega}^{\leftarrow}(\{y_{1}, y_{3}\}) = \{x_{1}, x_{2}\}.$$

$$\xi_{\omega}^{\leftarrow}(\{y_{1}, y_{2}\}) = \xi_{\omega}^{\leftarrow}(Y) = \{x_{1}, x_{2}\}.$$

Thus, we obtain attribute oriented concepts $(\xi_\omega^\to(\mu), \xi_\omega^\leftarrow(\xi_\omega^\to(\mu)))$ as follows:

$$\{(\{x_1, x_2\}, Y), (\emptyset, \{y_2, y_3\})\}$$

Theorem 2.9. Let (X, Y, R) be a fuzzy context. Define a function $\omega_R^{\rightarrow}: L^X \rightarrow L^Y$ as follows:

$$\omega_R^{\rightarrow}(\lambda)(y) = \bigvee_{x \in X} (\lambda(x) \to R(x, y)).$$

Then we have the following properties:

(1) $\omega_R^{\to} \in K(X,Y)$ and ω_R^{\to} has a right adjoint mapping ω_R^{\leftarrow} with

$$\omega_R^{\leftarrow}(\rho)(x) = \bigwedge_{y \in Y} (\rho(y) \to R(x, y)).$$

Moreover, $\omega_R^{\leftarrow}(\omega_R^{\rightarrow}(\lambda)) \geq \lambda$ and $\omega_R^{\rightarrow}(\omega_R^{\leftarrow}(\rho)) \geq \rho$ for all $\lambda \in L^X$ and $\rho \in L^Y$.

(2) $(\omega_R^{\rightarrow}, \omega_R^{\leftarrow})$ is an isotone Galois connections and $(\omega_R^{\leftarrow}(\omega_R^{\rightarrow}(\lambda)), \omega_R^{\rightarrow}(\lambda))$ for all $\lambda \in L^X$ are formal concepts.

 $\begin{array}{lll} \text{(3)} \ \omega_R^{\rightarrow}(\alpha\odot\lambda) = \alpha \ \rightarrow \ \omega_R^{\rightarrow}(\lambda) = \omega_{\alpha\rightarrow R}^{\rightarrow}(\lambda) \ \text{and} \\ \omega_R^{\leftarrow}(\alpha\odot\rho) = \alpha \ \rightarrow \ \omega_R^{\leftarrow}(\rho) = \omega_{\alpha\rightarrow R}^{\leftarrow}(\rho), \ \text{for all} \ \lambda \in L^X, \rho \in L^Y. \end{array}$

(4)
$$\phi_{\omega_R}^{\rightarrow}(\mu) = (\omega_R^{\rightarrow}(\mu))^*$$
 and $\phi_{\omega_R}^{\leftarrow}(\rho) = \omega_R^{\leftarrow}(\rho^*)$ where

$$\phi_{\omega_R}^{\rightarrow}(\mu)(y) = \bigvee_{y \in Y} (\mu(x) \odot R^*(x,y)),$$

$$\phi_{\omega_R}^{\leftarrow}(\rho)(x) = \bigwedge_{y \in Y} (R^*(x, y) \to \rho(y)).$$

(5) The pair $(\phi_{\omega_R}^{\rightarrow}, \phi_{\omega_R}^{\leftarrow})$ is an isotone Galois connection and $(\phi_{\omega_R}^{\leftarrow}(\phi_{\omega_R}^{\rightarrow}(\lambda)), \phi_{\omega_R}^{\rightarrow}(\lambda))$ are attribute concepts.

(6)

$$\xi_{\omega_R}^{\leftarrow}(\rho)(x) = \bigvee_{y \in Y} (\rho(y) \odot R^*(x,y)),$$

$$\xi_{\omega_R}^{\rightarrow}(\lambda)(y) = \bigwedge_{x \in X} (R^*(x, y) \to \lambda(x))$$

(7) The pair $(\xi_{\omega_R}^{\leftarrow}, \xi_{\omega_R}^{\rightarrow})$ is an isotone Galois connection and $(\xi_{\omega_R}^{\leftarrow}(\rho), \xi_{\omega_R}^{\rightarrow}(\xi_{\omega_R}^{\leftarrow}(\rho)))$ for all $\rho \in L^Y$ are object oriented concepts.

 $\begin{array}{ll} \textit{Proof.} \ \ (1) \, \text{Since} \, \omega_{\overrightarrow{R}} \, (\bigvee_{i \in \Gamma} \lambda_i)(y) = \bigwedge_{x \in X} (\bigvee_{i \in \Gamma} \lambda_i(x) \to R(x,y)) \\ = \, \bigwedge_{i \in \Gamma} \left(\bigwedge_{x \in X} (\lambda_i(x) \to R(x,y) \right) = \bigwedge_{i \in \Gamma} \omega_{\overrightarrow{R}} \, (\lambda_i)(y), \, \, \omega_{\overrightarrow{R}} \, \text{ has a right adjoint mapping } \omega_{\overrightarrow{R}} \\ \text{as follows:} \end{array}$

$$\begin{array}{ll} \omega_R^{\leftarrow}(\rho)(x) &= \bigvee \{\lambda \mid \rho \leq \omega_R^{\rightarrow}(\lambda)\} \\ &= \bigvee \{\lambda \mid \rho(y) \leq \bigwedge(\lambda(x) \rightarrow R(x,y))\} \\ &= \bigvee \{\lambda \mid \lambda(x) \leq \bigwedge_{y \in Y}(\rho(y) \rightarrow R(x,y))\} \\ &= \bigwedge_{y \in Y}(\rho(y) \rightarrow R(x,y)) \end{array}$$

$$\omega_{R}^{\leftarrow}(\omega_{R}^{\rightarrow}(\lambda))(x)
= \bigwedge_{y \in Y} \{\omega_{R}^{\rightarrow}(\lambda)(y) \to R(x,y)\}
= \bigwedge_{y \in Y} \{\bigwedge_{x \in X} (\lambda(x) \to R(x,y)) \to R(x,y)\}
\ge \bigwedge_{y \in Y} \{(\lambda(x) \to R(x,y)) \to R(x,y)\}
\ge \lambda(x).$$

$$\begin{array}{l} \omega_R^{\rightarrow}(\omega_R^{\leftarrow}(\rho))(y) \\ = \bigwedge_{x \in X} \{ \omega_R^{\leftarrow}(R)(\rho)(x) \to R(x,y) \} \\ = \bigwedge_{x \in X} \{ \bigwedge_{y \in Y}(\rho(y) \to R(x,y)) \to R(x,y) \} \\ \geq \bigwedge_{x \in X} \{ (\rho(y) \to R(x,y)) \to R(x,y) \} \\ \geq \rho(y). \end{array}$$

(3) By Lemma 1.3(6), we prove:

$$\begin{array}{ll} \omega_R^{\rightarrow}(\alpha\odot\lambda)(y) &= \bigwedge_{x\in X}((\alpha\odot\lambda)(x)\to R(x,y)) \\ &= \bigwedge_{x\in X}(\alpha\to(\lambda(x)\to R(x,y))) \\ &= \alpha\to \bigwedge_{x\in X}(\lambda(x)\to R(x,y)) \\ &= \alpha\to\omega_R^{\rightarrow}(\lambda)(y) \\ &= \bigwedge_{x\in X}(\lambda(x)\to(\alpha\to R(x,y))) \\ &= \omega_{\alpha\to R}^{\rightarrow}(\lambda)(y) \end{array}$$

(4)

$$\begin{split} \phi^{\rightarrow}_{\omega_R}(\mu)(y) &= (\omega_R^{\rightarrow}(\mu))^*(y) \\ &= (\bigwedge_{x \in X} (\mu(x) \rightarrow R(x,y))^* \\ &= \bigvee_{x \in X} (\mu(x) \odot R^*(x,y)) \text{(by Lemma 1.3(7))}. \\ \phi^{\leftarrow}_{\omega_R}(\rho)(x) &= \omega_R^{\leftarrow}(\rho^*)(x) \\ &= \bigvee_{y \in Y} (\rho^*(y) \rightarrow R(x,y)) \text{(by Lemma 1.3(7))} \\ &= \bigwedge_{u \in Y} (R^*(x,y) \rightarrow \rho(y)). \end{split}$$

(5) It follows from Theorem 2.6(3).(6)

$$\begin{array}{ll} \xi_{\omega_R}^{\leftarrow}(\rho)(x) &= (\omega_R^{\leftarrow}(\rho)(x))^* \\ &= (\bigwedge_{y \in Y} (\rho(y) \to R(x,y)))^* \\ &= \bigvee_{y \in Y} (\rho(y) \odot R^*(x,y)). \end{array}$$

$$\begin{array}{ll} \xi_{\omega_R}^{\rightarrow}(\mu)(y) &= \omega_R^{\rightarrow}(\mu^*)(y) \\ &= \bigwedge_{x \in X} (\mu^*(x) \rightarrow R(x,y)) \\ &= \bigwedge_{x \in X} (R(x,y)^* \rightarrow \mu(x)). \end{array}$$

(7) It follows from Theorem 2.6(7).

Corollary 2.10. Let X and Y be sets and $R \subset X \times Y$. Define a function $\omega_R^{\rightarrow}: P(X) \rightarrow P(Y)$ as follows:

$$\omega_R^{\rightarrow}(A) = \{ y \in Y \mid (\exists x \in X) (x \in A \rightarrow (x, y) \in R) \}$$

Then we have the following properties:

(1) $\omega_R^{\rightarrow} \in K(X,Y)$ and ω_R^{\rightarrow} has a right adjoint mapping ω_R^{\leftarrow} with

$$\omega_R^{\leftarrow}(B) = \{ x \in X \mid (\exists y \in Y) (y \in B \to (x, y) \in R) \}.$$

Moreover, $\omega_R^{\leftarrow}(\omega_R^{\rightarrow}(A)) \supset A$ and $\omega_R^{\rightarrow}(\omega_R^{\leftarrow}(B)) \supset B$ for all $A \in P(X)$ and $B \in P(Y)$.

- (2) $(\omega_R^{\rightarrow}, \omega_R^{\leftarrow})$ is an isotone Galois connections and $(\omega_R^{\leftarrow}(\omega_R^{\rightarrow}(A)), \omega_R^{\rightarrow}(A))$ for all $A \in P(X)$ are formal concepts.
- (3) $\phi_{\omega_R}^{\rightarrow}(A)=(\omega_R^{\rightarrow}(A))^c$ and $\phi_{\omega_R}^{\leftarrow}(B)=\omega_R^{\leftarrow}(B^c)$ where

$$\phi_{\omega_R}^{\rightarrow}(A) = \{ y \in Y \mid (\exists x \in A)((x \in A) \land ((x, y) \in R^c)) \},$$

$$\phi_{\omega_B}^{\leftarrow}(B) = \{ x \in X \mid (\forall y \in Y)((x, y) \in \mathbb{R}^c \to y \in B) \}.$$

(5) The pair $(\phi_{\omega_R}^{\rightarrow},\phi_{\omega_R}^{\leftarrow})$ is an isotone Galois connection and $(\phi_{\omega_R}^{\leftarrow}(\phi_{\omega_R}^{\rightarrow}(A)),\phi_{\omega_R}^{\rightarrow}(A))$ are attribute concepts. (6)

$$\xi_{\omega_B}^{\leftarrow}(B) = \{ x \in X \mid (\exists y \in B) ((y \in B) \land ((x, y) \in R^c) \},$$

$$\xi_{c(x)}^{\rightarrow}(A) = \{ y \in Y \mid (\forall x \in X)((x,y) \in \mathbb{R}^c \to x \in A) \}$$

(7) The pair $(\xi_{\omega_R}^{\leftarrow}, \xi_{\omega_R}^{\rightarrow})$ is an isotone Galois connection and $(\xi_{\omega_R}^{\leftarrow}(B), \xi_{\omega_R}^{\rightarrow}(\xi_{\omega_R}^{\leftarrow}(B)))$ for all $B \in P(Y)$ are object oriented concepts.

Example 2.11. Let $X = \{a, b, c\}$, $Y = \{x, y, z, w\}$ and $L = \{0, 1\}$ be sets. Define a relation R as follows:

$$R = \{(a, x), (a, y), (b, y), (b, w), (c, z), (c, w)\}.$$

(1) Define $\omega_R^{\rightarrow}: P(X) \rightarrow P(Y)$ as $\omega_R^{\rightarrow}(A) = \{y \in Y \mid a \in A \rightarrow (a,y) \in R\};$

$$\begin{split} \omega_{R}^{\rightarrow}(\emptyset) &= Y, \omega_{R}^{\rightarrow}(\{a\}) = \{x,y\}, \omega_{R}^{\rightarrow}(\{b\}) = \{y,w\}, \\ \omega_{R}^{\rightarrow}(\{c\}) &= \{z,w\}, \omega_{R}^{\rightarrow}(\{a,b\}) = \{y\}, \\ \omega_{R}^{\rightarrow}(\{b,c\}) &= \{w\}, \omega_{R}^{\rightarrow}(\{a,c\}) = \omega_{R}^{\rightarrow}(X) = \emptyset. \end{split}$$

We obtain
$$\omega_R^{\leftarrow}(B) = \{ a \in X \mid y \in B \to (a, y) \in R \};$$

$$\begin{split} \omega_R^{\leftarrow}(\emptyset) &= X, \omega_R^{\leftarrow}(\{w\}) = \{b,c\}, \\ \omega_R^{\leftarrow}(\{z\}) &= \{c\} = \omega_R^{\leftarrow}(\{z,w\}), \\ \omega_R^{\leftarrow}(\{y\}) &= \{a,b\}, \omega_R^{\leftarrow}(\{y,w\}) = \{b\} = \omega_R^{\leftarrow}(\{x,y\}), \\ \omega_R^{\leftarrow}(\{x\}) &= \{a\}, \omega_R^{\leftarrow}(\{y,z\}) = \omega_R^{\leftarrow}(\{y,z,w\}) = \emptyset, \\ \omega_R^{\leftarrow}(\{x,w\}) &= \omega_R^{\leftarrow}(\{x,z\}) = \omega_R^{\leftarrow}(\{x,z,w\}) = \emptyset, \end{split}$$

 $\omega_{R}^{\leftarrow}(\{x,y,w\}) = \omega_{R}^{\leftarrow}(\{x,y,z\}) = \omega_{R}^{\leftarrow}(Y) = \emptyset,$

Thus, we obtain formal concepts

$$\{(\emptyset, Y), (\{a\}, \{x, y\}), (\{b\}, \{y, w\}), (\{c\}, \{z, w\})$$
$$(\{b, c\}, \{w\}), (\{a, b\}, \{y\})(X, \emptyset)\}$$

(2) We obtain a relation $R^* = R^c$ as follows:

$$R^c = \{(a, z), (a, w), (b, x), (b, z), (c, x), (c, y)\}.$$

We obtain $\phi_{\omega_R}^{\rightarrow}: P(X) \rightarrow P(Y)$ as

$$\begin{split} \phi_{\omega_R}^{\rightarrow}(A) &= \{y \in Y \mid (\exists a \in A)(a \in A \land (a,y) \in R^c)\} \\ \phi_{\omega_R}^{\rightarrow}(\emptyset) &= \emptyset, \phi_{\omega_R}^{\rightarrow}(\{a\}) = \{z,w\}, \phi_{\omega_R}^{\rightarrow}(\{b\}) = \{x,z\}, \\ \phi_{\omega_R}^{\rightarrow}(\{c\}) &= \{x,y\}\phi_{\omega_R}^{\rightarrow}(\{a,b\}) = \{x,z,w\}, \end{split}$$

$$\phi_{\omega_R}^{\rightarrow}(\{b,c\}) = \{x,y,z\}, \phi_{\omega_R}^{\rightarrow}(\{a,c\}) = \phi_{\omega_R}^{\rightarrow}(X) = Y.$$
 We obtain $\phi_{\omega_R}^{\leftarrow}(B) = \{a \in X \mid y \in B \rightarrow (a,y) \in R\};$

$$\begin{split} \phi^{\leftarrow}_{\omega_R}(\emptyset) &= \phi^{\leftarrow}_{\omega_R}(\{x\}) = \phi^{\leftarrow}_{\omega_R}(\{y\}) = \phi^{\leftarrow}_{\omega_R}(\{z\}) = \emptyset, \\ \phi^{\leftarrow}_{\omega_R}(\{w\}) &= \phi^{\leftarrow}_{\omega_R}(\{x,w\}) = \emptyset, \end{split}$$

$$\phi_{\omega_B}^{\leftarrow}(\{y,z\}) = \phi_{\omega_B}^{\leftarrow}(\{y,w\}) = \emptyset,$$

$$\begin{split} \phi^{\leftarrow}_{\omega_R}(\{x,y\}) &= \phi^{\leftarrow}_{\omega_R}(\{x,y,w\}) = \{c\}, \phi^{\leftarrow}_{\omega_R}(\{z,w\}) = \{b\}, \\ \phi^{\leftarrow}_{\omega_R}(Y) &= X, \phi^{\leftarrow}_{\omega_R}(\{x,z\}) = \{b\}, \phi^{\leftarrow}_{\omega_R}(\{y,z,w\}) = \{a\}, \\ \phi^{\leftarrow}_{\omega_R}(\{x,z,w\}) &= \{a,b\}, \phi^{\leftarrow}_{\omega_R}(\{x,y,z\}) = \{b,c\}. \end{split}$$

Thus, we obtain attribute oriented concepts

$$\{(\emptyset,\emptyset),(\{c\},\{x,y\}),(\{b\},\{x,z\}),(\{a\},\{z,w\}),\\ (\{b,c\},\{x,y,z\}),(\{a,b\},\{x,z,w\})(X,Y)\}$$

(3) We obtain $\xi_{\omega_R}^{\leftarrow}(B) = \{a \in X \mid (\exists y \in B)((y \in B) \land ((a, y) \in R^c))\};$

$$\begin{split} \xi_{\omega_R}^{\leftarrow}(\emptyset) &= \emptyset, \xi_{\omega_R}^{\leftarrow}(\{w\}) = \{a\}, \xi_{\omega_R}^{\leftarrow}(\{y\}) = \{c\}, \\ \xi_{\omega_R}^{\leftarrow}(\{z\}) &= \xi_{\omega_R}^{\leftarrow}(\{z,w\}) = \{a,b\}, \xi_{\omega_R}^{\leftarrow}(\{y,w\}) = \{a,c\}, \\ \xi_{\omega_R}^{\leftarrow}(\{x\}) &= \xi_{\omega_R}^{\leftarrow}(\{x,y\}) = \{b,c\}, \xi_{\omega_R}^{\leftarrow}(\{y,z\}) = X \\ \xi_{\omega_R}^{\leftarrow}(\{y,z,w\}) &= \xi_{\omega_R}^{\leftarrow}(\{x,w\}) = \xi_{\omega_R}^{\leftarrow}(\{x,z\}) = X, \\ \xi_{\omega_R}^{\leftarrow}(\{x,z,w\}) &= \xi_{\omega_R}^{\leftarrow}(\{x,y,w\}) = X, \\ \xi_{\omega_R}^{\leftarrow}(\{x,y,z\}) &= \xi_{\omega_R}^{\leftarrow}(Y) = X. \\ \xi_{\omega_R}^{\rightarrow}(A) &= \{y \in Y \mid ((a,y) \in R^c \to (a \in A)\}; \\ \xi_{\omega_R}^{\rightarrow}(\emptyset) &= \xi_{\omega_R}^{\rightarrow}(\{b\}) = \emptyset, \xi_{\omega_R}^{\rightarrow}(\{c\}) = \{y\}, \\ \xi_{\omega_R}^{\rightarrow}(\{b,c\}) &= \{x,y\}, \xi_{\omega_R}^{\rightarrow}(\{a,c\}) = \{w\}, \\ \xi_{\omega_R}^{\rightarrow}(\{b,c\}) &= \{x,y\}, \xi_{\omega_R}^{\rightarrow}(\{a,c\}) = \{y,w\}, \xi_{\omega_R}^{\rightarrow}(X) = Y. \end{split}$$

Thus, we obtain object oriented concepts

$$\{(\emptyset,\emptyset),(\{c\},\{y\}),(\{b,c\},\{x,y\}),(\{a\},\{w\})$$
$$(\{a,c\},\{y,w\}),(\{a,b\},\{z,w\}),(X,Y)\}$$

References

- [1] R. Bělohlávek," Similarity relations in concept lattices," *J. Logic and Computation*, vol. 10, no. 6, pp. 823-845, 2000.
- [2] R. Bělohlávek, "Lattices of fixed points of Galois connections," *Math. Logic Quart.*, vol. 47, pp.111-116, 2001.
- [3] R. Bělohlávek," Concept lattices and order in fuzzy logic," *Ann. Pure Appl. Logic*, vol. 128, pp. 277-298, 2004.
- [4] R. Bělohlávek, *Fuzzy relational systems*, Kluwer Academic Publisher, New York, 2002.
- [5] G. Georgescu, A. Popescue, "Non-dual fuzzy connections," Arch. Math. Log., vol. 43, pp.1009-1039, 2004.
- [6] U. Höhle, E. P. Klement, *Non-classical logic and their applications to fuzzy subsets*, Kluwer Academic Publisher, Boston, 1995.
- [7] Y.C. Kim, J.W. Park, "Join preserving maps and various concepts," *Int.J. Contemp. Math. Sciences*, vol.5, no.5, pp. 243-251, 2010.
- [8] H. Lai, D. Zhang, "Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory," *Int. J. Approx. Reasoning*, vol. 50, pp.695-707, 2009.
- [9] E. Turunen, *Mathematics Behind Fuzzy Logic*, A Springer-Verlag Co., 1999.
- [10] R. Wille, Restructuring lattice theory; an approach based on hierarchies of concept, in: 1. Rival(Ed.), Ordered Sets, Residel, Dordrecht, Boston, 1982.

Jung Mi Ko

She received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1983 and 1988, respectively. From 1988 to present, she is a professor in Department of Mathematics, Gangneung-Wonju University. Her research interests are fuzzy logic.

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in Department of Mathematics, Gangneung-Wonju University. His research interests are fuzzy logic and fuzzy topology.