DOI QR코드

DOI QR Code

Optimization of the experimental conditions for structural studies of the second transmembrane domain from human wild-type & mutant melanocortin-4 receptor

  • Gang, Ga-Ae (Department of Chemistry, Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Choi, Sung-Sub (Department of Chemistry, Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Park, Tae-Joon (Department of Chemistry, Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies) ;
  • Kim, Yong-Ae (Department of Chemistry, Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies)
  • Received : 2010.10.30
  • Accepted : 2010.12.09
  • Published : 2010.12.20

Abstract

Human melanocortin-4 receptor (hMC4R) has a critical role in part of energy homeostasis, and their heterozygous mutations related in genetic cause of severe human obesity. In order to study the structure and function of these membrane proteins, it is important to prepare the samples. However, the preparation of transmembrane peptide is seriously difficult and time-consuming. Overexpression and purification of membrane proteins was reported to be difficult due to their innate insoluble and toxic properties. Among the many difficulties, the most important is the difficulty in obtaining sufficient quantities of purified protein. Recently, we succeed to produce large amounts of the second transmembrane domain from the wild-type hMC4R (wt-TM2) and D90N mutant hMC4R (m-TM2) and proposed the structural difference of them in membrane-like environments. In this paper, we demonstrate the optimization procedures to express and purify wt-TM2 or m-TM2 peptides, and solution NMR studies in different detergents to get high-resolution spectra were also described.

Keywords

References

  1. J. Voisey, L. Carroll, A. van Daal, Current Drug Targets 4, 586. (2003). https://doi.org/10.2174/1389450033490858
  2. M. E. Hadley, and R. T. Dorr, Peptides 27, 921. (2006). https://doi.org/10.1016/j.peptides.2005.01.029
  3. K. G. Mountjoy, M. T. Mortrud, M. J. Low, R. B. Simerly, and R. D. Cone, Mol Endocrinol. 8, 1298. (1994). https://doi.org/10.1210/me.8.10.1298
  4. I. S. Farooqi, G. S. Yeo, J. M. Keogh, S. Aminian, S. A. Jebb, G. Butler, T. Cheetham, and S. O’Rahilly, J. Clin. Invest. 106, 271. (2000). https://doi.org/10.1172/JCI9397
  5. C. Vaisse, K. Clement, E. Durand, S. Hercberg, B. Guy-Grand, and P. Froguel, J. Clin. Invest. 106, 253. (2000). https://doi.org/10.1172/JCI9238
  6. I. S. Farooqi, J. M. Keogh, G. S. Yeo, E. J. Lank, T. Cheetham, and S. O’Rahilly, N. Engl. J. Med. 348, 1085. (2003). https://doi.org/10.1056/NEJMoa022050
  7. C. Lubrano-Berthelier, E. Durand, B. Dubern, A. Shapiro, P. Dazin, J. Weill, C. Ferron, P. Froguel, and C. Vaisse, Hum. Mol. Genet. 12, 145. (2003). https://doi.org/10.1093/hmg/ddg016
  8. B. Dubern, K. Clement, V. Pelloux, P. Froguel, J. Girardet, B. Guy-Grand, and P. Tounian, J. Pediatr. 139, 204. (2001). https://doi.org/10.1067/mpd.2001.116284
  9. B. Heike, K. Heiko, E. Andrea, C. Vladimir, G. Thomas, and G. Annette, Diabetes 52, 2984. (2003). https://doi.org/10.2337/diabetes.52.12.2984
  10. R. Grisshammer, and C. G. Tate, Q. Rev. Biophys. 28, 315. (1995). https://doi.org/10.1017/S0033583500003504
  11. P. J. Loll, J. Struct. Biol. 142, 144. (2003). https://doi.org/10.1016/S1047-8477(03)00045-5
  12. C. G. Tate, and R, Grisshammer, Trends Biotechnol. 14, 426. (1996). https://doi.org/10.1016/0167-7799(96)10059-7
  13. T. J. Park, S. S. Choi, G. A. Gang, and Y. Kim, Protein Expr. Purif. 62, 139. (2008). https://doi.org/10.1016/j.pep.2008.08.008

Cited by

  1. The Status of Guanine Nucleotides in Taxol-Stabilized Microtubules Probed by31P CPMAS NMR Spectroscopy vol.15, pp.2, 2011, https://doi.org/10.6564/JKMRS.2011.15.2.104