DOI QR코드

DOI QR Code

Feeding specificity and photosynthetic activity of Korean sacoglossan mollusks

  • Received : 2010.10.14
  • Accepted : 2010.11.06
  • Published : 2010.12.01

Abstract

During feeding on algal cytoplasm, some sacoglossans are known to keep the chloroplasts photosynthetically active for days to months in their digestive cells. Korean sacoglossan mollusks containing functional chloroplasts were screened using an in vivo chlorophyll fluorescence measuring system (pulse amplitude modulation, PAM). We collected six sacoglossans feeding on siphonous and siphonocladous green algae (Elysia atroviridis, E. nigrocapitata, E. ornata, Ercolania boodleae, Placida dendritica, Stiliger sp.) and one feeding on ceramiaceaen algae (Stiliger berghi) and performed feeding experiments using 37 algal species. Three species of Elysia showed strong photosynthetic activity for months. However, P. dendritica maintained functional chloroplasts only for several hours after feeding. E. boodleae, S. berghi, and Stiliger sp. showed no photosynthetic activity in any circumstances. Among all species, E. nigrocapitata was capable to tolerate the longest period of starvation for over 4 months. Four 'solar powered' sacoglossans bonded avidly to their specific algal food. Each species attached to and consumed only one algal species when several algae were given together. While they occasionally consumed other algae after prolonged starvation, they always reverted to their specific algae when available.

Keywords

References

  1. Clark, K. B., Jensen, K. R. & Stirts, H. M. 1990. Survey for functional kleptoplasty among west Atlantic Ascoglossa (= Sacoglossa) (Mollusca: Opisthobranchia). Veliger 33:339-345.
  2. Evertsen, J. & Johnsen, G. 2009. In vivo and in vitro differences in chloroplast functionality in the two north Atlantic sacoglossans (Gastropoda, Opisthobranchia) Placida dendritica and Elysia viridis. Mar. Biol. 156:847-859. https://doi.org/10.1007/s00227-009-1128-y
  3. Floyd, G. L. & O’Kelly, C. J. 1990. Phylum Chlorophyta: class Ulvophyceae. In Margulis, L., Corliss, J. O., Melkonian, M. & Chapman, D. J. (Eds.) Handbook of Protoctista. Jones and Barlett Publishers, Boston, pp. 617-635.
  4. Handeler, K., Grzymbowski, Y. P., Krug, P. J. & Wagele, H. 2009. Functional chloroplasts in metazoan cells: a unique evolutionary strategy in animal life. Front. Zool. 6:28. https://doi.org/10.1186/1742-9994-6-28
  5. Handeler, K. & Wagele, H. 2007. Preliminary study on molecular phylogeny of Sacoglossa and a compilation of their food organisms. Bonn. Zool. Beitr. 55:231-254.
  6. Jensen, K. R. 1993. Morphological adaptations and plasticity of radular teeth of the Sacoglossa (= Ascoglossa) (Mollusca: Opisthobranchia) in relation to their food plants. Biol. J. Linn. Soc. 48:135-155. https://doi.org/10.1111/j.1095-8312.1993.tb00883.x
  7. Kawaguti, S. & Yamasu, T. 1965. Electron microscopy on the symbiosis between an elysioid gastropod and chloroplasts of a green alga. Biol. J. Okayama Univ. 11:57-65.
  8. Kim, G. H. & Klotchkova, T. A. 2004. Development of the protoplasts induced from wound-response in fifteen marine green algae. Jpn. J. Phycol. 52(Suppl):111-116.
  9. Kim, G. H., Klotchkova, T. A. & Kang, Y. M. 2001. Life without a cell membrane: regeneration of protoplasts from disintegrated cells of the marine green alga Bryopsis plumosa. J. Cell Sci. 114:2009-2014.
  10. Klochkova, T. A., Kang, S. H., Cho, G. Y., Pueschel, C. M., West, J. A. & Kim, G. H. 2006. Biology of a terrestrial green alga, Chlorococcum sp. (Chlorococcales, Chlorophyta), collected from the Miruksazi stupa in Korea. Phycologia 45:349-358. https://doi.org/10.2216/04-58.1
  11. Klotchkova, T. A., Chah, O. K., West, J. A. & Kim, G. H. 2003. Cytochemical and ultrastructural studies on protoplast formation from disintegrated cells of the marine alga Chaetomorpha aerea (Chlorophyta). Eur. J. Phycol. 38:205-216. https://doi.org/10.1080/0967026031000136330
  12. Koh, D. B. 2006. Sea slugs of Korea. Pungdeung Publisher, Seoul, 248 pp.
  13. Kumar, S., Nei, M., Dudley, J. & Tamura, K. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9:299-306. https://doi.org/10.1093/bib/bbn017
  14. Maeda, T., Kajita, T., Maruyama, T. & Hirano, Y. 2010. Molecular phylogeny of the Sacoglossa, with a discussion of gain and loss of kleptoplasty in the evolution of the group. Biol. Bull. 219:17-26. https://doi.org/10.1086/BBLv219n1p17
  15. Martynov, A. V. 1997. Subclassis Opisthobranchia. In Kussakin, O. G., Ivanova, M. B. & Tsurpalo A. P. (Eds.) A Check-list of Animals, Plants and Fungi from the Intertidal Zone of Far Eastern Seas of Russia. Vladivostok, Dalnauka, pp. 77-80 (in Russian).
  16. MEGA. 2007. MEGA4+: molecular evolutionary genetics analysis. Available from: http//www.megasoftware.net. Accessed Oct 10, 2010.
  17. Minichev, Yu. S. 1976. Subclass Opisthobranchia. In Zhirmunskiy A. V. (Ed.) Animals and Plants of Peter the Great Bay. Leningrad, Nauka, pp. 92-95 (in Russian).
  18. NCBI. 2010. GenBank. Available from: http//www.ncbi.nlm.nih.gov. Accessed Oct 10, 2010.
  19. Pak, J. Y., Solorzano, C., Arai, M. & Nitta, T. 1991. Two distinct steps for spontaneous generation of subprotoplasts from a disintegrated Bryopsis cell. Plant Physiol. 96:819-825. https://doi.org/10.1104/pp.96.3.819
  20. Pierce, S. K., Curtis, N. E., Hanten, J. J., Boerner, S. L. & Schwartz, J. A. 2007. Transfer, integration and expression of functional nuclear genes between multicellular species. Symbiosis 43:57-64.
  21. Rumpho, M. E., Summer, E. J., Green, B. J., Fox, T. C. & Manhart, J. R. 2001. Mollusc/algal chloroplast symbiosis: how can isolated chloroplasts continue to function for month in the cytosol of a sea slug in the absence of an algal nucleus? Zoology 104:303-312. https://doi.org/10.1078/0944-2006-00036
  22. Rumpho, M. E., Worful, J. M., Lee, J., Kannan, K., Tyler, M. S., Bhattacharya, D., Moustafa, A. & Manhart, J. R. 2008. Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica. Proc. Natl. Acad. Sci. U. S. A. 105:17867-17871. https://doi.org/10.1073/pnas.0804968105
  23. Schuster, G., Timberg, R. & Ohad, I. 1988. Turnover of thylakoid photosystem II proteins during photoinhibition of Chlamydomonas reinhardtii. Eur. J. Biochem. 177:403-410. https://doi.org/10.1111/j.1432-1033.1988.tb14389.x
  24. Schwartz, J. A., Curtis, N. E. & Pierce, S. K. 2010. Using algal transcriptome sequences to identify transferred genes in the sea slug, Elysia chlorotica. Evol. Biol. 37:29-37. https://doi.org/10.1007/s11692-010-9079-2
  25. Sea slug forum. 2010. Sea slug forum. Available from: http://www.seaslugforum.net. Accessed Oct 10, 2010.
  26. Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  27. Tatewaki, M. & Nagata, K. 1970. Surviving protoplasts in vitro and their development in Bryopsis. J. Phycol. 6:401-403.
  28. Trench, R. K., Trench, M. E. & Muscatine, L. 1972. Symbiotic chloroplasts: their photosynthetic products and contribution to mucus synthesis in two marine slugs. Biol. Bull. 142:335-349. https://doi.org/10.2307/1540236
  29. Vass, I., Styring, S., Hundal, T., Koivuniemi, A., Aro, E. M. & Andersson, B. 1992. Reversible and irreversible intermediates during photoinhibition of photosystem II: stable reduced QA species promote chlorophyll triplet formation. Proc. Natl. Acad. Sci. U. S. A. 89:1408-1412. https://doi.org/10.1073/pnas.89.4.1408
  30. Wagele, H., Deusch, O., Handeler, K., Martin, R., Schmitt, V., Christa, G., Pinzger, B., Gould, S. B., Dagan, T., Klussmann-Kolb, A. & Martin, W. 2010. Transcriptomic evidence that longevity of acquired plastids in the photosynthetic slugs Elysia timida and Plakobrachus ocellatus does not entail lateral transfer of algal nuclear genes. Mol. Biol. Evol. DOI: 10.1093/molbev/msq239.
  31. Warner, M. E., Fitt, W. K. & Schmidt, G. W. 1999. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl. Acad. Sci. U. S. A. 96:8007-8012. https://doi.org/10.1073/pnas.96.14.8007
  32. West, J. A. 2010. Master culture list. Avaliable from: http://www.botany.unimelb.edu.au/West. Accessed Oct 10, 2010.
  33. Yamamoto, Y. Y., Yusa, Y., Yamamoto, S., Hirano, Y., Hirano, Y., Motomura, T., Tanemura, T. & Obokata, J. 2009. Identification of photosynhetic sacoglossans from Japan. Endocytobiosis Cell Res. 19:112-119.

Cited by

  1. Morphology, molecular phylogeny and photosynthetic activity of the sacoglossan mollusc, Elysia nigrocapitata, from Korea vol.160, pp.1, 2013, https://doi.org/10.1007/s00227-012-2074-7
  2. Transcriptome analysis of the short-term photosynthetic sea slug Placida dendritica vol.30, pp.4, 2015, https://doi.org/10.4490/algae.2015.30.4.303
  3. Crawling leaves: photosynthesis in sacoglossan sea slugs vol.64, pp.13, 2013, https://doi.org/10.1093/jxb/ert197
  4. Identification of sequestered chloroplasts in photosynthetic and non-photosynthetic sacoglossan sea slugs (Mollusca, Gastropoda) vol.11, pp.1, 2014, https://doi.org/10.1186/1742-9994-11-15
  5. Functional kleptoplasty in a limapontioidean genus: phylogeny, food preferences and photosynthesis inCostasiella, with a focus onC. ocellifera(Gastropoda: Sacoglossa) vol.80, pp.5, 2014, https://doi.org/10.1093/mollus/eyu026
  6. Relative importance and interactive effects of photosynthesis and food in two solar-powered sea slugs vol.161, pp.5, 2014, https://doi.org/10.1007/s00227-014-2402-1
  7. An ELIP-like gene in the freshwater green alga, Spirogyra varians (Zygnematales), is regulated by cold stress and CO2 influx vol.25, pp.5, 2013, https://doi.org/10.1007/s10811-013-9975-9
  8. Effects of photosynthesis on the survival and weight retention of two kleptoplastic sacoglossan opisthobranchs vol.93, pp.01, 2013, https://doi.org/10.1017/S0025315412000628
  9. Shallow water sea slugs (Gastropoda: Heterobranchia) from the northwestern coast of the Sea of Japan, north of Peter the Great Bay, Russia vol.4, 2016, https://doi.org/10.7717/peerj.2774
  10. Phylogenetic evidence for multiple independent origins of functional kleptoplasty in Sacoglossa (Heterobranchia, Gastropoda) vol.15, pp.1, 2015, https://doi.org/10.1007/s13127-014-0189-z
  11. Isolation and Characterization of a Sex-Specific Lectin in a Marine Red Alga, Aglaothamnion oosumiense Itono vol.78, pp.20, 2012, https://doi.org/10.1128/AEM.00415-12
  12. Photoprotective Non-photochemical Quenching Does Not Prevent Kleptoplasts From Net Photoinactivation vol.6, pp.2296-701X, 2018, https://doi.org/10.3389/fevo.2018.00121
  13. (Heterobranchia: Sacoglossa) vol.85, pp.1, 2019, https://doi.org/10.1093/mollus/eyy047
  14. Calcium oxalate mineralisation in the algae vol.58, pp.4, 2010, https://doi.org/10.1080/00318884.2019.1578587