암모늄염으로 처리된 리기다 소나무의 연소특성

Combustive Characteristics of Pinus Rigida Treated with Ammonium Salts

  • 정영진 (강원대학교 소방방재공학과) ;
  • 진의 (강원대학교 소방방재연구센터)
  • 투고 : 2010.08.16
  • 심사 : 2010.10.08
  • 발행 : 2010.10.31

초록

이 연구에서는 암모늄염을 처리한 리기다 소나무의 연소성을 시험하였다. 실온에서 3종류의 암모늄염 즉, 황산암모늄, 제1인산암모늄, 그리고 제2인산암모늄의 20wt% 수용액에 각각 리기다 소나무를 함침시켜 건조시킨 후 콘칼로리미터(ISO 5660-1)를 이용하여 그의 연소성을 시험하였다. 암모늄염으로 처리한 시험편은 처리하지 않은 시험편에 비하여 그의 연소성을 감소 시켰다. 이것은 연소 억제성이 순수 리기다 소나무 시험편에 처리한 암모늄염 때문에 향상된 것으로 생각된다. 또한 암모늄염으로 처리한 시험편은 처리하지 않은 시험편에 비해 낮은 최대열방출률과 낮은 총방출열량을 나타내었다.

This study was performed to test the combustive properties of Pinus rigida-based materials by the treatment of ammonium salts. Pinus rigida plate was soaked in three 20 wt% ammonium salt solutions such as ammonium sulfate (AMSF), monoammonium phosphate (MAPP), and diammonium phosphate (DAPP), respectively, at the room temperature. After drying specimen treated with chemicals, combustive properties were examined by the cone calorimeter (ISO 5660-1). Comparing with virgin pinus rigida plate, specimens treated with the ammonium salts had lower combustive properties and It is supposed that the combustion-retardation properties improved due to the treated ammonium salts in the virgin Pinus rigida. Also, the specimens with treated ammonium salts showed both the lower peak heat release rate (PHRR) and lower total heat release (THR) than those of virgin plate.

키워드

참고문헌

  1. E. Baysal, M. Altinok, M. Colak, S.K. Ozaki and H. Toker, "Fire Resistance of Douglas fir (Psedotsuga menzieesi) Treated with Borates and Natural Extractives", Bioresour. Technol., Vol.98,pp.1101-1105(2007). https://doi.org/10.1016/j.biortech.2006.04.023
  2. O. Grexa, "Falme Retardant Treated Plyood", Polym. Degrad. Stab., Vol.64, pp.529-533(1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  3. 건축법 제43조 시행령 제61조, "건축물의 내부마감재료"(2004).
  4. 소방기본법 제12조 시행령 제20조, "방염대상물품 및 방염성능기준"(2005).
  5. P.W. Lee and J.H. Kwon, "Effects of the Treated Chemicals on Fire Retardancy of Fire Retardant Treated Particleboards", Mogjae-Gonghak, Vol.11, No.5, pp.16-22(1983).
  6. T.S. Mcknight, "The Hygroscopicity of Wood Treated with Fire-retarding Compounds", Fore. Prod. Res. Branch, Dep. of Forestry, Canada. Report No.190(1962).
  7. S.M. Draganov and F.T. Winters, Jr. "An Evaluation of Borates and other Inorganic Salts as Fire Retardants for Wood Products", Fore. Prod. J., Vol.15, No.12, pp.463-467(1965).
  8. I.S. Goldstein and W.A. Dreher, "A. Non-hygroscopic Fire Retardant Treatment for Wood", Froe. Prod. J., Vol.11, No.5, pp.235-237(1961).
  9. R. Kozlowski and M. Hewig, "1st Int Conf. Progress in Flame Retardancy and Flammability Testing", Pozman, Poland, Institute of Natural Fibres(1995).
  10. R. Stevens, S.E. Daan, R. Bezemer and A. Kranenbarg, "The Strucure-activity Relationship of Retardant Phosphorus Compounds in Wood", Polym. Degrad. Stab., Vol.91, pp.832-841(2006). https://doi.org/10.1016/j.polymdegradstab.2005.06.014
  11. M.L. Hardy, "Regulatory Status and Environmental Properties of Brominated Flame Retardants Undergoing Risk Assessment in the EU: DBDPO, OBDPO, PeBDPOand HBCD", Polym. Degrad. Stab., Vol.64, pp.545-555(1999). https://doi.org/10.1016/S0141-3910(98)00141-4
  12. Y. Tanaka, "Epoxy Resin Chemistry and Technology", Marcel Dekker, New York(1988).
  13. M.M. Hirschler, "Fire Hazard and Toxic Potency of the Smoke from Burning Materias", Advances in Combustion Toxicology, Vol.2, pp.229-247(1990).
  14. V. Babrauskas, "New Technology to Reduce Fire Losses and Costs", eds. S.J. Grayson, D.A. Smith, Elsevier Appied Science Publisher, London, UK (1986).
  15. M.M. Hirschler, "Thermal Decomposition and Chemical Composition", 239, American Chemical Society Symposium Series 797(2001).
  16. ISO 5660-1, "Reaction-to-Fire Tests - Heat Release, Smoke Production and Mass Loss Rate - Part 1: Heat Release Rate (Cone Calorimeter Method)", Genever(2002).
  17. O. Grexa, E. Horvathova, O. Besinova and P. Lehocky, "Flame Retardant Treated Plywood", Polym. Degrad. Stab., 64, pp.529-533(1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  18. K. Tonsuaadu, M. Borissova, V. Bender and J. Pelt, "Thermal Reactions in Synthetic Apattie-ammonium Sulfate Mixture", Phosphorus, Sulfur, and Silicon and the Related Elements, 179, pp.2395-2407 (2004). https://doi.org/10.1080/10426500490474815a
  19. W.T. Simpso, "Drying and Control of Moisture Content and Dimensional Changes", Chap. 12, pp.1- 21, Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A.(1987).
  20. M.J. Spearpoint, "Predicting the Ignition and Burning Rate of Wood in the Cone Calorimeter using an Intergral Model", pp.30-46. NIST GCR 99-775, U.S.A.(1999).
  21. F.M. Pearce, Y.P. Khanna and D. Raucher, "Thermal Analysis in Polymer Flammability", Chap. 8, Thermal Characterization of Polymeric Materials, Academic Press, New York, U.S.A.(1981).
  22. J.D. DeHaan, "Kirks's Fire Investigation", pp.84-112. fifth edition, Prentice Hall.(2002).
  23. V. Babrauskas, "Development of Cone Calorimeter- A Bench-scale Heat Release Rate Apparatus Based on Oxygen Consumption", Fire and Materials, Vol.8, No.2, pp.81-95(1984). doi: 1002/fam.810080206. https://doi.org/10.1002/fam.810080206
  24. V. Babrauskas and S.J. Grayson, "Heat Release in Fires", pp. 644, E & FN Spon (Chapman and Hall), London, UK(1992).
  25. V. Babrauskas, "Heat Release Rate", Section 3, The SFPE Handbook of Fire Protection Engineering, Fourth ed., National Fire Protection Association, Massatusetts, U.S.A.(2008).
  26. M. Windholz, "The Merck Index of Chemicals, Drugs, and Biologicals", Tenth edition, Merck & CO., Inc. N.J., U.S.A.(1983).
  27. M. Delichatsios, B. Paroz and A. Bhargava, "Flammability Properties for Charring Materials", Fire Safety Journal, Vol.38, pp.219-228(2003). https://doi.org/10.1016/S0379-7112(02)00080-2
  28. M.J. Spearpoint and G.J. Quintiere, "Predicting the Burning of Wood Using an Integral Model", Combustion and Flame, Vol.123, pp.308-324(2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  29. J.G. Quintire, "Principles of Fire Behavior", Chap. 5, Cengage Learning, Delmar, U.S.A.(1998).
  30. M. Risholm-Sundman, M. Lundgren, E. Vestin and P. Herder, "Emissions of Acetic Acid and other Volatile Organic Compounds from Different Species of Solid Wood", Holz alas Rohund Werkstoff, Vol.56, No.2, pp.125-129(1998). https://doi.org/10.1007/s001070050282
  31. R.V. Petrella, "The Assesment of Full-scale Fire Hazards from Cone Calorimeter Data", J. of Fire Sciences, Vol.12, pp.14-43(1994). https://doi.org/10.1177/073490419401200102