DOI QR코드

DOI QR Code

The Effects of the Anode Size and Position on the Limiting Currents of Natural Convection Mass Transfer Experiments in a Vertical Pipe

수직 원형관내 자연대류 물질전달실험에서 양극의 면적과 위치가 한계전류에 미치는 영향

  • Kang, Kyoung-Uk (Department of Nuclear and Energy Engineering, Jeju National University) ;
  • Chung, Bum-Jin (Department of Nuclear and Energy Engineering, Jeju National University)
  • Published : 2010.01.01

Abstract

Natural convection heat transfer rates in a vertical pipe were measured for $Gr_H$ number from 2.1x$10^6$ to 1.2x$10^9$. Using the analogy concept, heat transfer experiments were replaced by mass transfer experiments. A cupric acid - copper sulfate ($H_2SO_4-CuSO_4$) electroplating system was adopted as the mass transfer system and the mass transfer rates were measured. Comparison of the results with the existing laminar and turbulent natural convection heat transfer correlations on a vertical plate showed very good agreements except for the high $Gr_H$ case, where the boundary layer inside the vertical pipe interferes. The agreements showed the usefulness of the analogy experiment method. Using 3 different anode size and 6 different geometrical configurations, the effects of the anode size and position were explored. As expected, the anode size and position do not affect the limiting currents for most cases. These results will be used as the experimental background for the positioning and sizing of the anodes for a more complex experiment.

수직 원형관내 자연대류에 의한 열전달량을 $Gr_H$ 수 2.1x$10^6{\sim}2x10^9$의 범위에 대해 측정하였다. 유사성 원리를 이용하여 열전달계를 물질전달계로 대체하였다. 본 연구에서 채택된 물질전달계는 황산-황산구리 수용액의 전기도금계였다. 본 실험의 결과를 층류 및 난류에 대한 수직평판에 대하여 개발된 자연대류 열전달상관식과 비교한 결과, 일치함을 확인하였다. 다만 $Gr_H$$10^9$이상의 난류 영역에서는 수직관내에서 경계층간 간섭의 영향으로 인하여 수직관에서의 실험결과가 수직평판보다 높게 나타났다. 이러한 일치는 유사성 실험의 유용성을 증명한다. 3가지 다른 형태의 양극과 6가지 다른 기하구조를 사용하여, 양극의 면적과 위치가 미치는 영향을 실험적으로 평가하였다. 예상된 바와 같이 양극의 면적과 위치는 대부분의 경우 한계전류에 영향을 주지 않았다. 이러한 결과는 보다 복잡한 실험에 있어서 양극의 크기와 위치를 지정하는 이론적 근거로 활용될 것이다.

Keywords

References

  1. Bejan, A., 1994, Convection Heat Transfer, 2nd ed., John Wiley & Sons, INC, New York, pp.466-514
  2. Lefevre, E. J., 1956, "Laminar Free Convection from a Vertical Plane Surface," 9th International Congress on Applied Mechanics, Brussels, pp. 1-168
  3. Fouad, M. G. and Ibl, N., 1960, "Natural Convection Mass Transfer at Vertical Electrodes Under Turbulent Flow Conditions," Electrochimica Acta, Vol. 3, pp. 233-243 https://doi.org/10.1016/0013-4686(60)85007-4
  4. Holzbecher, M. and Steiff, A., 1995, "Laminar and Turbulent Free Convection in Vertical Cylinders with Internal Heat Generation," Int. J. Heat Mass Transfer, Vol. 38, No. 15, pp. 2893-2093 https://doi.org/10.1016/0017-9310(95)00031-4
  5. Rosen, E. M. and Hanratty, T. J., 1961, "Use of Boundary Layer Theory to Predict the Effect of Heat Transfer on the Laminar Flow Field in a Vertical Tube with a Constant Temperature Wall," A. I. Ch. E. JI. Vol. 7, pp. 112-123 https://doi.org/10.1002/aic.690070126
  6. 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood
  7. Selman, J. R. and Tobias, C. W., 1978, Mass Transfer Measurement by the Limiting Current Technique, Adv. Chem. Eng. vol. 10, pp. 211-318 https://doi.org/10.1016/S0065-2377(08)60134-9
  8. Agar, J. N., 1947, Diffusion and Convection at Electrodes, Discussion of Faraday Soc., 1, pp. 27-37
  9. Ko Sang-Hyuk, Moon Deok-Won and Chung Bum-Jin, 2006, "Applications of Electroplating Method for Heat Transfer Studies Using Analogy Concept," Nuclear engineering and Technology, Vol. 38, pp. 251-258

Cited by

  1. A Preliminary Experiment for Rayleigh-Benard Natural Convection for Severe Accident Condition vol.21, pp.3, 2012, https://doi.org/10.5855/ENERGY.2012.21.3.254
  2. Effect of Horizontal Pitch-to-Diameter Ratio on the Natural-Convection Heat Transfer of Two Staggered Cylinders vol.36, pp.3, 2012, https://doi.org/10.3795/KSME-B.2012.36.3.259
  3. Natural Convection Heat Transfer of an Inclined Helical Coil in a Duct vol.23, pp.2, 2014, https://doi.org/10.5855/ENERGY.2014.23.2.013
  4. Effect of Adiabatic Sidewalls on Natural Convection in a Rectangular Cavity vol.34, pp.9, 2010, https://doi.org/10.3795/KSME-B.2010.34.9.825
  5. Experiments on Natural Convection on the Outer Surface of a Vertical Pipe by Using Fluids with High Pr Number vol.35, pp.1, 2011, https://doi.org/10.3795/KSME-B.2011.35.1.033
  6. Visualization of Natural Convection Heat Transfer on Horizontal Cylinder Using the Copper Electroplating System vol.35, pp.1, 2011, https://doi.org/10.3795/KSME-B.2011.35.1.043
  7. The Effect of Pitch-to-Diameter Ratio on Natural Convection Heat Transfer of Two In-Line Horizontal Cylinders vol.35, pp.4, 2011, https://doi.org/10.3795/KSME-B.2011.35.4.417
  8. Natural Convection Heat Transfer on Inclined Plates vol.35, pp.7, 2011, https://doi.org/10.3795/KSME-B.2011.35.7.701