DOI QR코드

DOI QR Code

Creep Characteristics Verification of FE Model for SnPb Solder

SnPb 솔더에 대한 유한요소모델의 크리프 특성 검증

  • Published : 2010.01.01

Abstract

The heat sink system for a main board in a network server computer is built on printed circuit board by an anchor structure, mounted by eutectic SnPb solder. The solder creeping is caused by a constant high temperature condition in the computer and it eventually makes fatal failures. The FE model is used to calculate the stress and predict the life of soldered anchor in the computer. In the model, Anand constitutive equation is employed to simulate creep characteristics of solder. The creep test is conducted to verify and calibrate the solder model. A special jig is designed to mitigate the flexure of printed circuit board and to get the creep deformation of solder only in the test. Test results are compared with analysis and calibration is conducted on Anand model's constants. Precise life prediction of soldered anchor in creep condition can be performed by this model.

본 논문에서는 네트워크 서버용 컴퓨터 주기판 내 장착된 열방열 시스템 지지구조물에 대한 유한요소 모델의 솔더 크리프 특성을 검증하였다. 열방열 시스템은 앵커 구조물로 지지되며 앵커 구조물은 솔더를 이용하여 인쇄회로기판에 장착된다. 컴퓨터 내 발생하는 지속적인 고온환경 하에서 솔더의 크리핑이 발생하고 이는 궁극적으로 지지구조물의 파괴로 이어진다. 유한요소모델은 솔더에 발생하는 응력분석과 수명예측을 위해 사용되며, 솔더 크리프 특성을 모사하기 위하여 Anand 크리프 모델을 적용하였다. 모델을 검증하고 교정하기 위하여 크리프 시험을 수행하였다. 시험은 인쇄회로기판의 변형을 제외한 솔더 변형만을 측정하기 위하여 특별한 지그를 설계하여 수행하였다. 크리프 시험결과를 유한요소해석결과와 비교하여 Anand 크리프 모델을 검증하고 교정을 수행하였다. 교정된 유한요소모델을 이용하여 열방열 시스템 구조물의 보다 정확한 수명 예측을 수행할 수 있다.

Keywords

References

  1. Meeker, W. Q. and Escobar, L. A., 1993, "A Review of Recent Research and Current Issues in Accelerated Testing," International Statistical Review, Vol 61, No.1, pp.147-168 https://doi.org/10.2307/1403600
  2. Li, J. and Dasgupta, A., 1993, "Failure- Mechanism Models for Creep and Creep Rupture," IEEE Trans. on reliability, Vol 42, No.3, pp.339-353 https://doi.org/10.1109/24.257816
  3. Kim, I. H., Park, T. S. and Lee, S. B., 2004, "A Comparative Study of the Fatigue Behavior of SnAgCu and Snpb Solder Joints," Trans.of the KSME(A), Vol. 28, No. 12, pp. 1856-1863 https://doi.org/10.3795/KSME-A.2004.28.12.1856
  4. Lee, S. C., Hyun, C. M., Lee, H. M., Kim, M. J., Kim, H. K. and Kim, K. T., 2004, "Thermal Fatigue Reliability of Solder Joints in a Thin Film Optical Filter Device," Trans.of the KSME(A), Vol. 28, No. 6, pp. 677-684 https://doi.org/10.3795/KSME-A.2004.28.6.677
  5. www.matweb.com
  6. Tee, T.Y., Ng, H. S. and Zhong, Z., 2006, "Board Level Solder Joint Reliability Analysis of Stacked Die Mixed Flip-chip and Wirebond BGA," Micro- electronics Reliability, Vol. 46, No. 12, pp. 2131-2138 https://doi.org/10.1016/j.microrel.2006.01.010
  7. Amagai, M., 1999, "Chip Scale Package Solder Joint Reliability and Modeling," Microelectronics Reliability, Vol. 39, No. 4, pp. 463-477 https://doi.org/10.1016/S0026-2714(99)00017-7
  8. Pecht, M., Agarwal, R., McCluskey, P., Dishongh T., Javadpur, S. and Mahajan, R., 1998, Electronic Packaging Materials and their Properties, CRC Press
  9. Pang, J.H.L., Seetoh, C.W. and Wang, Z.P., 2000, "CBGA Solder Joint Reliability Evalulation Based on Elastic-Plastic-Creep Analysis," Journal of Electronic Packaging, Vol. 122, No. 3, pp. 255-261 https://doi.org/10.1115/1.1286120
  10. Zhao, J.-H., Dai, X. and Ho, P., 1998, "Analysis and Modeling Verification for Thermal Mechanical Deformation in Flip chip Packages," Proc. of 48th Electronic Components and Technology Conference, pp. 336-344
  11. Bhandarkar, S.M., Dasgupta, A., Barker, D., Pecht, M. and Engelmaier, W., 1992, "Influence of Selected Design Variables on Thermo-mechanical Stress Distributions in Plated-through-hole Structures," Journal of Electronic Packaging, Vol. 114, No.1, pp. 8-13. https://doi.org/10.1115/1.2905447
  12. Anand, L., 1982, "Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures," ASME Journal of Engineering Materials and Technology, Vol. 104, pp. 12-17 https://doi.org/10.1115/1.3225028
  13. Wilde, J., Becker, K., Thoben, M., Blum, W., Jupitz, T., Wang, G. and Cheng, Z.N., 2000 "Rate-Dependent Constitutive Relations Based on Anand Model for 92.5Pb5Sn2.5Ag Solder," IEEE Transaction on Advanced Packaging, Vol. 23, No. 3, pp. 408-414 https://doi.org/10.1109/6040.861554
  14. Cheng, Z.N., Wang, G.Z., Chen, L., Wilde, J. and Becker, K., 2000, "Viscoplastic Anand Model for Solder Alloys and its Application," Soldering and Surface Mount Technology, Vol. 12, No. 2, pp. 31-36 https://doi.org/10.1108/09540910010331428
  15. Darveaux R., 2000, "Effect of Simulation Methodology on Solder Joint Crack Growth Correlation", Proc. of 50th Electronic Components and Technology Conference, pp. 1048-1058
  16. Wang, G.Z., Cheng, Z.N., Becker, K. and Wilde, J., 2001, "Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys," Journal of Electronic Packaging, Vol. 123, pp. 247-253 https://doi.org/10.1115/1.1371781
  17. Yeo, A., Lee. C. and Pang, H. L., 2006, "Flip Chip Solder Reliability Analysis Using Viscoplastic and Elastic-Plastic-Creep Constitutive Models," IEEE Trans. Comp. Pack. Tech., Vol. 29, No. 2, pp. 355-363 https://doi.org/10.1109/TCAPT.2006.875893