DOI QR코드

DOI QR Code

A CLASS OF NONMONOTONE SPECTRAL MEMORY GRADIENT METHOD

  • Yu, Zhensheng (College of Science University of Shanghai for Science and Technology) ;
  • Zang, Jinsong (Modern Teaching Center University of Shanghai for Science and Technology) ;
  • Liu, Jingzhao (Editorial Department of Journal of Qufu Normal University)
  • Published : 2010.01.01

Abstract

In this paper, we develop a nonmonotone spectral memory gradient method for unconstrained optimization, where the spectral stepsize and a class of memory gradient direction are combined efficiently. The global convergence is obtained by using a nonmonotone line search strategy and the numerical tests are also given to show the efficiency of the proposed algorithm.

Keywords

References

  1. J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal. 8 (1988), no. 1, 141-148 https://doi.org/10.1093/imanum/8.1.141
  2. E. G. Birgin and J. M. Martinez, A spectral conjugate gradient method for unconstrained optimization, Appl. Math. Optim. 43 (2001), no. 2, 117-128 https://doi.org/10.1007/s00245-001-0003-0
  3. E. G. Birgin, J. M. Martinez, and M. Raydan, Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim. 10 (2000), no. 4, 1196-1211 https://doi.org/10.1137/S1052623497330963
  4. E. G. Birgin, J. M. Martinez, and M. Raydan, Spectral projected gradient methods, Encyclopedia of Optimization, C. A. Floudas and P. M. Pardalos, (Eds.), to appear
  5. E. E. Cragg and A. V. Levy, Study on a supermemory gradient method for the minimization of functions, J. Optimization Theory Appl. 4 (1969), 191-205 https://doi.org/10.1007/BF00930579
  6. L. Grippo, F. Lampariello, and S. Lucidi, A nonmonotone line search technique for Newton's method, SIAM J. Numer. Anal. 23 (1986), no. 4, 707-716 https://doi.org/10.1137/0723046
  7. W. Hock and K. Schittkowski, Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, 187. Springer-Verlag, Berlin-New York, 1981
  8. A. Miele and J. W. Cantrell, Study on a memory gradient method for the minimization of functions, J. Optimization Theory Appl. 3 (1969), 459-470 https://doi.org/10.1007/BF00929359
  9. Y. Narushima and H. Yabe, Global convergence of a memory gradient method for unconstrained optimization, Comput. Optim. Appl. 35 (2006), no. 3, 325-346 https://doi.org/10.1007/s10589-006-8719-z
  10. M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J. Optim. 7 (1997), no. 1, 26-33 https://doi.org/10.1137/S1052623494266365
  11. K. Schittkowski, More Test Examples for Nonlinear Programming Codes, Lecture Notes in Economics and Mathematical Systems, 282. Springer-Verlag, Berlin, 1987
  12. P. L. Toint, Non-monotone trust-region algorithms for nonlinear optimization subject to convex constraints, Math. Programming 77 (1997), no. 1, Ser. A, 69-94 https://doi.org/10.1007/BF02614518