DOI QR코드

DOI QR Code

STABILITY COMPUTATION VIA GROBNER BASIS

  • Published : 2010.01.01

Abstract

In this article, we discuss a Grobner basis algorithm related to the stability of algebraic varieties in the sense of Geometric Invariant Theory. We implement the algorithm with Macaulay 2 and use it to prove the stability of certain curves that play an important role in the log minimal model program for the moduli space of curves.

Keywords

References

  1. D. Bayer, The division algorithm and the Hilbert scheme, Ph. D. Thesis, Harvard University, 1982
  2. D. Bayer and I. Morrison, Standard bases and geometric invariant theory. I. Initial ideals and state polytopes, J. Symbolic Comput. 6 (1988), no. 2-3, 209-217 https://doi.org/10.1016/S0747-7171(88)80043-9
  3. D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995
  4. D. Grayson and M. Stillman, Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/
  5. B. Hassett and D. Hyeon, Log canonical models for the moduli space of curves: The first flip, arXiv:math.AG/0806.3444v1, 2008
  6. D. Hyeon and Y. Lee, Stability of bicanonical curves of genus three, Journal of Pure and Applied Algebra (2009), doi:10.1016/j.jpaa.2009.02.015
  7. D. Hyeon and Y. Lee, Log minimal model program for the moduli space of stable curves of genus three, arXiv:math.AG/0703093, 2007
  8. D. Hyeon and Y. Lee, Stability of tri-canonical curves of genus two, Math. Ann. 337 (2007), no. 2, 479-488 https://doi.org/10.1007/s00208-006-0046-2
  9. M. Kapranov, B. Sturmfels, and A. Zelevinsky, Chow polytopes and general resultants, Duke Math. J. 67 (1992), no. 1, 189-218 https://doi.org/10.1215/S0012-7094-92-06707-X
  10. F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I, Preliminaries on “det” and “Div”. Math. Scand. 39 (1976), no. 1, 19–55 https://doi.org/10.7146/math.scand.a-11642
  11. I. Morrison, Projective stability of ruled surfaces, Invent. Math. 56 (1980), no. 3, 269-304 https://doi.org/10.1007/BF01390049
  12. D. Schubert, A new compactification of the moduli space of curves, Compositio Math. 78 (1991), no. 3, 297-313

Cited by

  1. An Outline of the Log Minimal Model Program for the Moduli Space of Curves vol.26, pp.1, 2017, https://doi.org/10.1080/10586458.2016.1138250
  2. Log minimal model program for the moduli space of stable curves: the first flip vol.177, pp.3, 2013, https://doi.org/10.4007/annals.2013.177.3.3
  3. A Birational Contraction of Genus 2 Tails in the Moduli Space of Genus 4 Curves I vol.2014, pp.13, 2014, https://doi.org/10.1093/imrn/rnt042
  4. CHOW STABILITY OF CANONICAL GENUS 4 CURVES vol.50, pp.3, 2013, https://doi.org/10.4134/BKMS.2013.50.3.1029
  5. A State Polytope Decomposition Formula 2015, https://doi.org/10.1017/S0013091515000401
  6. Gröbner Techniques for Low-Degree Hilbert Stability vol.20, pp.1, 2011, https://doi.org/10.1080/10586458.2011.544577