References
- D. Anderson, Discrete third-order three-point right-focal boundary value problems, Advances in difference equations, IV. Comput. Math. Appl. 45 (2003), no. 6-9, 861-871 https://doi.org/10.1016/S0898-1221(03)80157-8
- D. Anderson and R. I. Avery, Multiple positive solutions to a third-order discrete focal boundary value problem, Comput. Math. Appl. 42 (2001), no. 3-5, 333-340 https://doi.org/10.1016/S0898-1221(01)00158-4
- R. I. Avery and A. C. Peterson, Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl. 42 (2001), no. 3-5, 313-322 https://doi.org/10.1016/S0898-1221(01)00156-0
- N. Aykut, Existence of positive solutions for boundary value problems of second-order functional difference equations, Comput. Math. Appl. 48 (2004), no. 3-4, 517-527 https://doi.org/10.1016/j.camwa.2003.10.007
- Z. Bai and W. Ge, Existence of three positive solutions for a one-dimensional p-Laplacian, Acta Math. Sinica (Chin. Ser.) 49 (2006), no. 5, 1045-1052
- X. Cai and J. Yu, Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2006), no. 2, 649-661 https://doi.org/10.1016/j.jmaa.2005.07.029
- W. Cheung, J. Ren, P. J. Y. Wong, and D. Zhao, Multiple positive solutions for discrete nonlocal boundary value problems, J. Math. Anal. Appl. 330 (2007), no. 2, 900-915 https://doi.org/10.1016/j.jmaa.2006.08.034
- J. R. Graef and J. Henderson, Double solutions of boundary value problems for 2mthorder differential equations and difference equations, Comput. Math. Appl. 45 (2003), no. 6-9, 873-885 https://doi.org/10.1016/S0898-1221(03)00063-4
- Z. He, On the existence of positive solutions of p-Laplacian difference equations, J. Comput. Appl. Math. 161 (2003), no. 1, 193-201 https://doi.org/10.1016/j.cam.2003.08.004
- I. Y. Karaca, Discrete third-order three-point boundary value problem, J. Comput. Appl. Math. 205 (2007), no. 1, 458-468 https://doi.org/10.1016/j.cam.2006.05.030
- R. Leggett and L. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), no. 4, 673-688 https://doi.org/10.1512/iumj.1979.28.28046
- Y. Li and L. Lu, Existence of positive solutions of p-Laplacian difference equations, Appl. Math. Lett. 19 (2006), no. 10, 1019-1023 https://doi.org/10.1016/j.aml.2005.10.020
- H. Pang, H. Feng, and W. Ge, Multiple positive solutions of quasi-linear boundary value problems for finite difference equations, Appl. Math. Comput. 197 (2008), no. 1, 451-456 https://doi.org/10.1016/j.amc.2007.06.027
- P. J. Y.Wong and R. P. Agarwal, Existence theorems for a system of difference equations with (n, p)-type conditions, Appl. Math. Comput. 123 (2001), no. 3, 389-407 https://doi.org/10.1016/S0096-3003(00)00078-3
- P. J. Y. Wong and L. Xie, Three symmetric solutions of Lidstone boundary value problems for difference and partial difference equations, Comput. Math. Appl. 45 (2003) no. 6-9, 1445-1460 https://doi.org/10.1016/S0898-1221(03)00102-0
- C. Yang and P. Weng, Green functions and positive solutions for boundary value problems of third-order difference equations, Comput. Math. Appl. 54 (2007), no. 4, 567-578 https://doi.org/10.1016/j.camwa.2007.01.032
- J. Yu and Z. Guo, Boundary value problems of discrete generalized Emden-Fowler equation, Sci. China Ser. A 49 (2006), no. 10, 1303-1314 https://doi.org/10.1007/s11425-006-1999-z
- G. Zhang and R. Medina, Three-point boundary value problems for difference equations, Comput. Math. Appl. 48 (2004), no. 12, 1791-1799 https://doi.org/10.1016/j.camwa.2004.09.002
Cited by
- Global continuum of positive solutions for discrete p-Laplacian eigenvalue problems vol.60, pp.4, 2015, https://doi.org/10.1007/s10492-015-0100-z
- Exact multiplicity of solutions for discrete second order Neumann boundary value problems vol.2015, pp.1, 2015, https://doi.org/10.1186/s13661-015-0495-1
- Existence of positive solutions for boundary value problems of p-Laplacian difference equations vol.2014, pp.1, 2014, https://doi.org/10.1186/1687-1847-2014-263
- Positive solutions of discrete Neumann boundary value problems with sign-changing nonlinearities vol.2015, pp.1, 2015, https://doi.org/10.1186/s13661-015-0500-8