DOI QR코드

DOI QR Code

Efficient Entropy Coding Method for Scalable Video Coding

스케일러블 비디오 부호화를 위한 효율적인 엔트로피 부호화 방법

  • Received : 2010.05.27
  • Accepted : 2010.08.24
  • Published : 2010.09.30

Abstract

Generally existing video codec employs entropy coding to deal with residual signals with considering temporal and spatial properties. Scalable Video Coding(SVC) which is extension of H.264/AVC has three technical concepts for removing redundancies between inter-layers. In spite of using novel prediction method between inter-layers in SVC, it is still using same entropy coding method to residual signals. According to the studies, the residual obtained by inter-layer prediction technique has different features of residual signal acquired by spatial or temporal prediction technique. In this paper, we propose an efficient entropy coding method which codes the residual signal obtained by inter-layer prediction with regarding its features adequately. We re-designed the Coded Block Pattern(CBP) table suitably for inter-layer texture prediction. The experiments show that the proposed method can further reduce the BD-Bitrate up to average 2.20% in 4CIF and 1.14% in CIF resolution compared to the existing JSVM 9.18.

일반적으로 현재 사용되는 비디오 코덱들은 모두 시간적 공간적 특성을 적절히 고려하여 차분 신호를 엔트로피 부호화한다. 스케일러블 비디오 부호화(SVC, Scalable Video Coding)는 계층 간의 중복성을 제거하고자 새로운 3가지 예측 기술을 도입하였음에도 계층간 예측된 신호에는 여전히 이전의 엔트로피 부호화 방법을 그대로 사용하고 있다. 실험결과에 따르면 계층 간 예측 방법을 이용하여 취득한 차분신호는 기존의 시간적 공간적 예측 방법을 통하여 얻은 차분 신호와는 다른 특성을 갖고 있다. 본 논문에서는 계층 간 예측 기술을 통해 얻은 차분신호에 대하여 엔트로피 부호화시 해당 차분 신호가 갖는 특성이 적절히 고려된 엔트로피 부호화 방법을 제안한다. 계층 간 텍스쳐 예측을 통해 얻은 차분 신호를 엔트로피 부호화하기 위하여 부호화된 블록 패턴(Coded Block Pattern, CBP) 표를 재설계한다. 이에 대한 실험 결과는 새롭게 재설계된 CBP 표가 기존의 JSVM 9.18 대비 4CIF 해상도의 영상에 대해 평균 2.20%, CIF 해상도의 영상에 대해 평균 1.14% 의 BD-Bitrate가 감소된다.

Keywords

References

  1. H.Schwarz, D.Marpe, T.Wiegand, "Overview of the Scalable Video Coding Extension of the H.264/AVC Standard," IEEE Trans. on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103-1119, Sep. 2007. https://doi.org/10.1109/TCSVT.2007.905532
  2. T. Wiegand, G. J. Sullivan, G. Bjontegaard, A. Luthra, "Overview of the H.264/AVC Video Coding Standard," IEEE Trans. on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560-576, Jul. 2003. https://doi.org/10.1109/TCSVT.2003.815165
  3. M.Wien, H.Schwarz, and T.Oelbaum, "Perfor mance analysis of SVC," IEEE Trans. on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1194-1203, Sep. 2003
  4. H.Schwarz, D.Marpe, T.Wiegand, "Constrained inter-layer prediction for single-loop decoding in spatial scalability," in Proc. ICIP, Genoa, Italy, vol. 2, pp. 807-873, Sep. 2005.
  5. Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, "Draft ITU-T Recommendation H.264 and ISO/IEC 14496-10 AVC," May 2003.
  6. I. Richardson, "H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia," John Wiley & Sons, 2003.
  7. M. Narroschke, H.G. Musmann, "Adaptive prediction error coding in spatial and frequency domain for H.264/AVC," ITU-T SG16/Q6 Document VCEG-AB06, Bangkok, Thailand, January 2006.
  8. H.Kirchhoffer, D.Marpe, H.Schwarz, T.Wiegand "A low-complexity approach for increasing the granularity of packet-based fidelity scalability in scalable video coding," PCS 2007, Lisbon, Portugal, Nov7, Sep.
  9. T.Wiegand, H.Schwarz, A.Joch, F. Kossentini, and G. J. Sullivan, "Rate-Constrained Coder Control and Comparison of Video Coding Standard," IEEE Trans, CVST, vol. 13, no. 7, pp. 688-703, July 2003.
  10. H.Schwarz, D.Marpe, and T.Wiegand, "Further results on constrained inter-layer prediction," Joint Video Team, Doc, JVT-O074, Busan, KR, April 2005.
  11. Peter Amon, Thomas Rathgen, and Davide Singer, "File Format for Scalable Video Coding," IEEE Trans. on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1174-1185, Sep. 2007. https://doi.org/10.1109/TCSVT.2007.905521