DOI QR코드

DOI QR Code

콘크리트 구조부재의 스트럿-타이 모델 해석을 통한 스트럿 유효강도의 적합성 평가

Validity Evaluation of Effective Strength of Concrete Strut using Strut-Tie Model Analysis of Structural Concrete

  • 전창현 ((주)평화엔지니어링 구조부) ;
  • 윤영묵 (경북대학교 건축토목공학부)
  • 투고 : 2009.12.16
  • 심사 : 2010.08.18
  • 발행 : 2010.10.31

초록

스트럿-타이 모델 방법은 응력교란영역을 포함하는 콘크리트 구조부재의 극한강도 해석 및 설계에 효과적인 방법으로 알려져 있다. 그러나 콘크리트 구조부재의 정확한 극한강도 해석 및 설계를 위해서는 콘크리트 스트럿의 유효강도를 정확하게 결정하여야 한다. 이를 위해 여러 콘크리트 스트럿의 유효강도 값, 식, 그리고 결정방법이 제안되었다. 이 연구에서는 연구문헌, 설계기준서, 그리고 본 연구자의 방법 등에 의해 결정한 콘크리트 스트럿의 유효강도를 여러 스트럿-타이 모델 설계예제집의 전통적인 선형 스트럿-타이 모델 방법에 적용하여 파괴실험이 수행된 24개 철근콘크리트 패널, 275개 철근콘크리트 깊은 보, 그리고 218개 철근콘크리트 코벨 등의 파괴강도를 평가하였으며, 그 결과의 비교분석을 통해 제안된 콘크리트 스트럿의 유효강도 값, 식, 방법 등의 적합성을 평가하였다. 이 연구를 통하여 콘크리트 구조부재의 파괴강도를 비교적 정확하고 일관적으로 평가한 본 연구자의 유효강도 결정방법은 콘크리트 구조부재의 종류, 스트럿-타이 모델의 구조형식, 전단경간대 유효깊이의 비, 그리고 콘크리트 압축강도 등의 주요 변수의 영향을 콘크리트 구조부재의 스트럿-타이 모델 해석 및 설계 시 합리적으로 반영할 수 있음을 알았다.

The strut-tie model approach has proven to be effective in the ultimate analysis and design of structural concrete with disturbed regions. For the reliable analysis and design by the approach, however, the effective strength of concrete struts must be determined accurately. In this study, the validity of the effective strength of concrete struts, presented by the several design codes and many researchers including the author, was examined through the ultimate strength analysis of 24 reinforced concrete panels, 275 reinforced concrete deep beams, and 218 reinforced concrete corbels by using the conventional linear strut-tie model approach of current codes. The present study shows that the author's approach, resulting in an accurate and consistent evaluation of the ultimate strength of the panels, deep beams, and corbels, may reflect rationally the effects of primary variables including the types of strut-tie model and structural concrete, the conditions of load and geometry, and the strength of concrete in the strut-tie model analysis and design of structural concrete.

키워드

참고문헌

  1. 김병헌, 윤영묵(2008) 단순지지 깊은 보 부정정 스트럿-타이 모델의 하중분배율 (I) : 하중분배율의 제안, 대한토목학회논문집, 대한토목학회, 제28권 제2A호, pp. 259-267.
  2. 김성칠, 박성용(2005) 철근콘크리트 깊은 보의 전단철근 효과에 관한 연구, 대한토목학회논문집, 대한토목학회, 제25권 제2A호, pp. 365-373.
  3. 윤영묵(2005) 스트럿-타이 모델에서 콘크리트 스트럿의 유효강도 (I) : 결정방법의 소개, 대한토목학회논문집, 대한토목학회, 제25권 제1A호, pp. 49-59.
  4. 한국콘크리트학회(2007) 콘크리트 구조부재의 스트럿-타이 모델설계 예제집 (KCI-M-06-001), 기문당, 220쪽.
  5. ACI Subcommittee 445 (2002) Examples for the Design of Structural Concrete with Strut-and-Tie Models; SP-208, American Concrete Institute, Farmington Hills, Michigan, USA.
  6. Anderson, N.S. and Ramirez, J.A. (1987) Effect of the Detailing of Stirrup Reinforcement on the Ultimate Strength and Behavior of Reinforced Concrete Members Failing in Shear, Publication No. CE-STR-87-2, School of Civil Engineering, Purdue University, Indiana, p. 380.
  7. American Concrete Institute (2005) Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05), Farmington Hills, Michigan, USA.
  8. American Concrete Institute (2008) Building Code Requirements for Structural Concrete (ACI 31M8=08) and Commentary, Farmington Hills, Michigan, USA.
  9. American Association of State Highway and Transportation Officials (2004) AASHTO LRFD Bridge Design Specifications, 3th Edition, Washington D.C., USA.
  10. American Association of State Highway and Transportation Officials (2007) AASHTO LRFD Bridge Design Specifications, 4th Edition, Washington, D.C., USA.
  11. Alshegeir, A. (1992) Analysis and Design of Disturbed Regions with Strut-tie Models, Ph.D Dissertation, School of Civil Engineering, Purdue University, Indiana, USA.
  12. Barton, D.L., Anderson, R.B., Bouadi, A., Jirsa, J.O., and Breen, J.E. (1991) An Investigation of Strut-And-Tie Models for Dapped Beam Details, Research Report 1127-1, Center for Transportation Research, The University of Texas at Austin, Texas, p. 187.
  13. Bergmeister, K., Breen, J.E., and Jirsa, J.O. (1991) Dimensioning of the Nodes and Development of Reinforcement, Structural Concrete, IABSE Colloquium, Stuttgart, Report, International Association for Bridge and Structural Engineering, Zurich, pp. 551-556.
  14. Brown, M.D., Sankovich, C.L., Bayrak, O., and Jirsa, J.O. (2006) Behavior and Efficiency of Bottle-Shaped Struts, ACI Structural Journal, Vol. 103, No. 3, pp. 348-355.
  15. Canadian Standards Association (1984) Design of Concrete Structures for Buildings, CAN3-A23.3-M84, Rexdale, Ontario, Canada.
  16. Comite Euro-International Du Beton (1993) CEB-FIP model code 1990, Thomas Telford Services, Ltd., London, p. 437.
  17. Foster, S.J., Powell, R.E., and Selim, H.S. (1996) Performance of high-strength concrete corbels, ACI Structural Journal, Vol. 93, No. 5, pp. 555-563.
  18. Foster, S.J. and Gilbelt, R.I. (1998) Experimental studies on highstrength concrete deep beams, ACI Structural Journal, Vol. 95, No. 4, pp. 382-390.
  19. Kong, P.Y.L. and Rangan, B.V. (1998) Shear strength of high-performance concrete beams, ACI Structural Journal, Vol. 95, No. 6, pp. 677-688.
  20. Kriz, L.B. and Raths, C.H. (1965) Connections in precast concrete structures - strength of corbels, PCI Journal, Vol. 10, No. 1, pp. 16-61. https://doi.org/10.15554/pcij.02011965.16.61
  21. MacGregor, J.G. (1997) Reinforced Concrete - Mechanics and Design, 3rd Edition, Prentice Hall, Englewood Cliffs, New Jersey, USA.
  22. Marti, P. (1985) Basic tools of reinforced concrete beam design, Journal of American Concrete Institute, Vol. 82, No. 1, pp. 46-56.
  23. Mattock, A. H., Chen, K. C., and Soongswang, K. (1976) The behavior of reinforced concrete corbels, PCI Journal, Vol. 21, No. 2, pp. 52-77. https://doi.org/10.15554/pcij.03011976.52.77
  24. Nielsen, M.P., Braestrup, M.W., Jensen, B.C., and Bach, F. (1978) Concrete Plasticity, Beam Shear - Shear in Joints - Punching Shear, Special Publication, Danish Society for Structural Science and Engineering, Lyngby, Denmark.
  25. Oh, J.K. and Shin, S.W. (2001) Shear strength of reinforced highstrength concrete deep beams, ACI Structural Journal, Vol. 98, No. 2, pp. 164-173.
  26. Portland Cement Association (2004) AASHTO LRFD Strut-Tie Model Design Examples, Skokie, Illinois, USA.
  27. Ramirez, J.A. and Breen, J.E. (1983) Proposed Design Procedure for Shear and Torsion in Reinforced and Prestressed Concrete, Research Report 248-4F, Center for Transportation Research, University of Texas at Austin, Texas, USA.
  28. Schlaich, J., Schaefer, K., and Jennewein, M. (1987) Towards a consistent design of structural concrete, Journal of the Prestressed Concrete Institute, Vol. 32, No. 3, pp. 74-151.
  29. Shin, S.W., Lee, K.S., Moon, J., and Ghosh, S.K. (1999) Shear Strength of Reinforced High-Strength Concrete Beams with Shear Span-to-Depth Ratios between 1.5 and 2.5, ACI Structural Journal, Vol. 96, No. 4, pp. 549-556.
  30. Smith, K.M. and Vantsiotis, A.S. (1982) Shear strength of deep beams, ACI Material Journal, Vol. 79, No. 3, pp. 201-213.
  31. Tan, K.H., Kong, F.K., Teng, S., and Guan, L. (1995) High-strength concrete deep beams with effective span and shear span variations, ACI Structural Journal, Vol. 92, No. 4, pp. 572-582.
  32. Tan, K.H., Kong, F.K., Teng, S., and Weng, L.W. (1997a) Effect of web reinforcement on high-strength concrete deep beams, ACI Structural Journal, Vol. 94, No. 6, pp. 572-582.
  33. Tan, K.H., Teng, S., Kong, F.K., and Lu, H.Y (1997b) Main tension steel in high strength concrete deep and short beams, ACI Structural Journal, Vol. 94, No. 5, pp. 752-768.
  34. Tan, K.H. and Lu, H.Y (1999) Shear behavior of large reinforced concrete deep beams and code comparisons, ACI Structural Journal, Vol. 96, No. 5, pp. 836-845.
  35. Teng, S., Kong, F.K., Poh, S.P., Guan, L.W., and Tan, K.H. (1996) Performance of strengthened concrete deep beams predamaged in shear, ACI Structural Journal, Vol. 93, No. 2, pp. 159-171.
  36. The International Federation for Structural Concrete(fib) (1999) Structural Concrete; Textbook on Behavior, Design and Performance Updated Knowledge of the CEB/FIP Model Code 1999 Volume 3, The International Federation for Structural Concrete(fib), Lausanne, Switzerland.
  37. Thurlimann, B. (1976) Shear strength of reinforced and prestressed concrete - CEB approach, Special Publication 59-6, American Concrete institute, Detroit, USA.
  38. Yun, Y.M. (2000) Nonlinear strut-tie model approach for structural concrete, ACI Structural Journal, Vol. 97, No. 4, pp. 581-590.