DOI QR코드

DOI QR Code

확률 분포 함수의 지수 곡선 접합을 이용한 RVE 적합성 평가

Evaluation of RVE Suitability Based on Exponential Curve Fitting of a Probability Distribution Function

  • 정상엽 (연세대학교 토목환경공학과) ;
  • 윤태섭 (연세대학교 토목환경공학과) ;
  • 한동석 (연세대학교 토목환경공학과)
  • 투고 : 2010.08.04
  • 심사 : 2010.08.24
  • 발행 : 2010.10.31

초록

2가지 이상의 재료로 구성된 다상(multi-phase) 재료는 상 분포에 따라 재료 특성이 다르기 때문에, 상 분포를 묘사할 수 있는 적절한 방법이 필요하다. 본 연구에서는 확률 분포 함수 two-point correlation function과 lineal-path function을 사용하여 재료 내부의 상 분포 상태를 확률적으로 묘사하였다. 수치 계산 방법으로 계산되는 확률 분포 함수를 3개의 매개 변수를 사용한 곡선 접합(curve fitting)을 이용하여 수식으로 표현하고, 적용성을 살펴보기 위하여 2상 합금 미세구조 가상 시편과 지반 모델 시편을 사용하였다. 이를 통해, 확률 분포 함수는 곡선 접합을 이용하여 지수 형태의 수식으로 표현이 가능하며, 이는 시편의 RVE로서의 활용 가능성을 판단하는데 사용될 수 있음을 확인하였다.

The phase distribution in a multi-phase material strongly affects its material properties. Therefore, a proper method to describe the phase distribution of a material is needed. In this research, probability distribution functions, two-point correlation and lineal-path functions, are used to represent the probabilistic phase distributions of a material. The probability distribution function is calculated using a numerical method and is described as an analytical form via exponential curve fitting with three parameters. Application of analytical form of probability distribution function is investigated using two-phase polycrystalline solids and soil samples. It is confirmed that the probability distribution functions can be represented as an exponential form using curve fitting which helps identifying the applicability of a representative volume element(RVE).

키워드

참고문헌

  1. 이영일, 김영욱, 최헌진, 이준근(1999) YAG상 첨가 탄화규소-질화규소 복합재료의 기계적특성, 한국세라믹학회지, 한국세라믹학회, 제36권, 제8호, pp. 799-804.
  2. Chung, S.-Y. and Han, T -S. (2010) Reconstruction of random twophase polycrystalline solids using low-order probability functions and evaluation of mechanical behavior, Comput. Mater. Sci., Elsevier, Vol. 49, pp. 705-719. https://doi.org/10.1016/j.commatsci.2010.06.014
  3. Coker, D.A. and Torquato, S. (1995) Extraction of morphological quantities from a digitized medium, J. Appl. Phys., American Institute of Physics, Vol. 77, pp. 6087-6099. https://doi.org/10.1063/1.359134
  4. Corson, P.B. (1974) Correlation functions for predicting properties of heterogeneous materials. I. experimental measurement of spatial correlation functions in multiphase solids, J. Appl. Phys., American Institute of Physics, Vol. 45, pp. 3159-3164. https://doi.org/10.1063/1.1663741
  5. Gokhale, A.M., Tewari, A., and Garmestani, H. (2005) Constraint on microstructural two-point correlation functions, Scr. Mater., Elsevier, Vol. 53, pp. 989-993. https://doi.org/10.1016/j.scriptamat.2005.06.013
  6. Han, T-S. and Dawson, P.R. (2005) Representation of anisotropic phase morphology, Modelling Simul. Mater. Sci. Eng., IOP Publishing, Vol. 13, pp. 203-223. https://doi.org/10.1088/0965-0393/13/2/004
  7. Heath, M.T. (2002) Scientific computing, McGraw-Hill, New York.
  8. Kelly, A., Groves, G, and Kidd, P. (2000) Crystallography and crystal defects, Wiley, Chichester.
  9. Lin, S., Garmestani, H., and Adams, B. (2000) The evolution of probability functions in an inelasticly deforming two-phase medium, Int. J. Solids Struct., Elsevier, Vol. 37, pp. 423-434. https://doi.org/10.1016/S0020-7683(99)00013-X
  10. Lu, B. and Torquato, S. (1992) Lineal-path function for random heterogeneous materials, Phys. Rev. A, American Physical Society, Vol. 45, pp. 922-929. https://doi.org/10.1103/PhysRevA.45.922
  11. Nasilio, G.A., Kress, J., and Yun, T.S. (2010) Characterisation of conduction phenomena in soils at the particle-scale: Finite element analyses in conjunction with synthetic 3D imaging, Comput. Geotech., Elsevier, accepted.
  12. Singh, H., Gokhale, A.M., Lieberman, S.I., and Tamirisakandala, S. (2008) Image based computations of lineal path probability distributions for microstructure representation, Mater. Sci. Eng., A Elsevier, Vol. 474, pp. 104-111. https://doi.org/10.1016/j.msea.2007.03.099
  13. Tewari, A., Gokhale, A.M., Spowart, J.E., and Miracle, D.B. (2004) Quantitative characterization of spatial clustering in threedimensional microstructures using two-point correlation functions, Acta Mater., Elsevier, Vol. 52, pp. 307-319. https://doi.org/10.1016/j.actamat.2003.09.016
  14. Torquato, S. (2002) Random heterogeneous materials, Springer, New York.
  15. Underwood, E. (1970) Quantitative stereology, Addison-Wesley, Massachusetts.