DOI QR코드

DOI QR Code

A Method Evaluating K0 of Granular Soil using DMT

DMT를 이용한 사질토 정지토압계수 평가방법

  • 최성근 (나우지오컨설턴트, 고려대학교 공과대학 건축사회환경공학부) ;
  • 이문주 ((주)한화건설, 고려대학교 공과대학 건축사회환경공학부) ;
  • 배경두 (고려대학교 공과대학 건축사회환경공학부) ;
  • 이우진 (고려대학교 공과대학 건축사회환경공학부)
  • Received : 2010.02.10
  • Accepted : 2010.06.23
  • Published : 2010.08.31

Abstract

This study suggests a method predicting at-rest coefficient of earth pressure ($K_0$) in order to evaluate the effect of stress history of granular soil. The method is based on the relation $K_D/K_0={\chi}(E_D/{\sigma}_m{^{\prime}})^{\delta}$, which is developed by combining two previously published relations such as $E_D/{\sigma}_m{^{\prime}}-{\psi}$ and $K_D/K_0-{\psi}$. As $K_D$ and $E_D$ are observed to be sensitive to the pre-stress, both indices are adopted for the estimation of $K_0$ value of granular soil. It is shown that the proposed $K_D/K_0-E_D/{\sigma}_m{^{\prime}}$ relation is insignificantly affected by the stress history. It is concluded from the comparative study that the proposed method, which uses only dilatometer test results to predict the $K_0$ of granular soil, provides more convenient and reliable prediction than other methods which use both CPT and DMT results.

본 연구에서는 사질토의 응력이력 효과를 평가하기 위해 정지토압계수($K_0$)를 추정하는 방법을 제안하였다. 제안된 방법은 사질토의 상태정수(${\psi}$)를 매개로 하여 $K_D/K_{0-\psi}$ 관계와 $E_D/{\sigma_m}^'-{\psi}$ 관계를 조합한 $K_D/K_0=\chi(E_D/{\sigma_m}^')^{\delta}$ 의 형태로 표현된다. 챔버에서 수행된 딜라토미터시험 결과에 의하면 본 연구에서 제안된 관계식은 응력이력에 영향을 받지 않는 것을 알 수 있었다. 제안된 방법은 사질토의 정지토압계수 추정 시 딜라토미터 시험결과 만을 이용하는 간편한 방법이며, 콘관입시험과 딜라토미터 시험 결과를 동시에 이용하는 기존의 방법에 비해 간단하고 신뢰성이 높은 장점이 있다.

Keywords

References

  1. Baldi, G., Bellotti, R., Ghionna, V., Jamiolkowski, M., Marchetti, S., and Pasqualini, E. (1986) Flat dilatometer tests in calibration chamber, Use of In Situ Tests in Geotechnical Engineering, GSP 6, ASCE, pp. 431-446.
  2. Been, K. and Jefferies, M.G (1985) A state parameter for sands, Geotechnique, Vol. 35, No. 2, pp. 99-112. https://doi.org/10.1680/geot.1985.35.2.99
  3. Bellotti, R., Fretti, C., Jamiolkowski, M., and Tanizawa, F. (1994) Flat dilatometer tests in Toyoura sand, Proceedings of 13th International Conference on Soil Mechanics and Foundation Engineering, New Delhi, India, Vol. 4, pp. 1779-1782.
  4. Choi, S.K. (2008) Estimation of stress history of sands using CPT and DMT, Ph.D. thesis, Korea University.
  5. Choi, S.K, Lee, M.J., Choo, H.W., Tumay, M.T., and Lee, W.J. (2010) Preparation of a large size granular specimen using a rainer system with a porous plate, Geotechnical Testing Journal, Vol. 33, No. 1, pp. 1-10.
  6. Clayton, C.R.I., Hababa, M.B., and Simons, N.E. (1985) Dynamic penetration resistance and the prediction of the compressibility of a fine-grained sand - a laboratory study, Geotechnique, Vol. 35, No. 1, pp. 19-31. https://doi.org/10.1680/geot.1985.35.1.19
  7. Cubrinovski, M. and Ishihara, K. (2002) Maximum and minimum void ratio characteristics of sands, Soils and Foundations, Vol. 42, No. 6, pp. 65-78. https://doi.org/10.3208/sandf.42.6_65
  8. Kim, S.H., Lee, M.J., Choi, S.K., Hong, S.J., and Lee, W.J. (2007) Relationship between the state Parameter and cone resistance of Busan sand, Journal of Korean Geotechnical Society, Vol. 23, No. 3, pp. 123-131.
  9. Konrad, J.M. (1988) Interpretation of flat plate dilatometer tests in sands in terms of the state parameter, Geotechnique, Vol. 38, No. 2, pp. 263-227. https://doi.org/10.1680/geot.1988.38.2.263
  10. Lambrechts, J.R. and Leonard, G.A. (1978) Effect of stress history on deformation of sand, Journal of Geotechnical Engineering, ASCE, Vol. 104, No. GT11 , pp. 1371-1387.
  11. Lunne, T., Robertson, P.K., and Powell, J.J.M. (1997) Cone Penetration Testing in Geotechnical Practice, Blackie Academic & Professional, London
  12. Marchetti, S. (1980) In situ tests by flat dilatometer, Journal of Geotechnical Engineering, ASCE, Vol. 106, No. GT3, pp. 299-321.
  13. Mayne, P. W. (1995) CPT determination of OCR and $K_0$ in clean quartz sands, Proceedings, CPT '95, Swedish Geotech Society, Linkoping, Vol. 2, pp. 215-220.
  14. Mayne, P. W. (2001) Stress-strain-strength-flow parameter from enhanced in-situ tests, Proceedings of International Conference on In-Situ Measurement of Soil Properties and Case Histories, Bali, Indonesia, pp. 27-48.
  15. Mayne, P. W. and Kulhawy, F.H. (1982) $K_0-OCR$ relationships in soil, Journal of Geotechnical Engineering, ASCE, Vol. 108, No. GT6, pp. 851-872.
  16. Miura, S. and Toki, S. (1982) A sample preparation method and its effect on static and cyclic deformation-strength properties of sand, Soils and Foundations, Vol. 22, No. 1, pp. 61-77. https://doi.org/10.3208/sandf1972.22.61
  17. Jamiolkowski, M., Ghionna, Y.N., Lancellotta, R., and Pasqualini, E. (1988) New correlation of penetration tests for design practice, Proceedings of the ist international Symposium on Penetration Testing, Orlando, Florida, Vol. 2, pp. 263-296.
  18. Jamiolkowski, M. and Robeltson, P.K. (1988) Closing address. Future trends for penetration testing, Geotechnology Conference: Penetration Testing in the UK, Birmingham, pp. 321-342, Thomas Telford, London.
  19. Yoshimi, Y., Kuwabara, F., and Tokimatsu, K. (1975) One-dimensional volume change characteristics of sands under very low confining stresses, Soils and Foundation, Vol. 15, No. 3, pp. 51-60. https://doi.org/10.3208/sandf1972.15.3_51