DOI QR코드

DOI QR Code

Extraction of Glycosaminoglycan from Sea Hare, Aplysia kurodai, and Its Functional Properties 2. Structural Properties of Purified Glycosaminoglycan

군소(Aplysia kurodai)에 분포하는 글루코사미노글리칸의 추출과 기능특성 2. 글루코사미노글리칸의 구조 특성

  • Yoon, Bo-Yeong (Dept. of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Choi, Byeong-Dai (Dept. of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Bae, Dong-Won (Central Instrument Facility, Gyeongsang National University) ;
  • Choi, Yeung-Joon (Dept. of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University)
  • 윤보영 (경상대학교 해양식품공학과/해양산업연구소) ;
  • 최병대 (경상대학교 해양식품공학과/해양산업연구소) ;
  • 배동원 (경상대학교 공동실험실습관) ;
  • 최영준 (경상대학교 해양식품공학과/해양산업연구소)
  • Received : 2010.09.30
  • Accepted : 2010.11.01
  • Published : 2010.11.30

Abstract

Glycosaminoglycan (GAG) was purified from polysaccharide extracted from sea hare muscle on DEAE-Sepharose column and investigated for the functional groups, distribution of sugars, composition of disaccharide and structure of GAG. Purified GAG was composed of disaccharide above 55% of total sugar. Purified GAG showed amide I peak in 1648/cm and C-O stretch peak as properties of carbohydrate, amino acid peak in 1457/cm, and peak in 866/cm as properties of monosaccharide by FT-IR. Fucose, N-acetylgalactosamine, N-acetylglucosamine, glucose, galactose, mannose and xylose were found in MALDI-TOF MS/MS spectra of hydrolysates by chondroitin sulfate ABC lyase and heparanase I. Purified GAG was expected to be heparan sulfate including N-acetylgalactosamine and N-acetylglucosamine above 70% of total sugar. The structure of GAG was supposed as GlyUA(2S)-GlcNS and GlyUA-GlcNS(6S) with O-linkage on protein core.

군소에서 추출한 다당류로부터 DEAE-Sepharose 상에서 glycosaminoglycan(GAG)을 정제하여 기능기의 분포, 구성당의 분포, 이당류의 조성과 당 구조를 조사하였다. 정제한 GAG는 기본 형태를 구성하는 이당류 단위가 전체 구성물 중 55% 이상을 차지하고 있는 다당 복합체였다. 정제한 GAG는 1648 $cm^{-1}$에서 amide I의 특징적인 띠와 1457 $cm^{-1}$에서 C-O stretch, 탄수화물 및 아미노산의 특징, 866 $cm^{-1}$에서 단당류의 특징을 보이는 것으로 나타났다. 정제한 GAG는 fucose, N-acetylgalactosamine, N-acetylglucosamine, glucose, galactose, 미량의 mannose와 xylose로 구성되어 있는 것으로 나타났고, 이중에서 N-acetylgalactosamine, N-acetylglucosamine이 70% 이상을 차지하는 다당 복합체인 heparan sulfate인 것으로 추정되었다. 군소 GAG는 단백질핵의 threonine 잔기에 O-연결된 GlyUA(2S)-GlcNS와 GlyUA-GlcNS(6S) 구조를 가지고 있는 것으로 나타났다.

Keywords

References

  1. Davies P, Roubin RH, Whitelock JM. 2008. Characterization and purification of glycosaminoglycans from crude biological samples. J Agric Food Chem 56: 343-348. https://doi.org/10.1021/jf072624v
  2. Woods RJ. 1998. Computational carbohydrate chemistry: what theoretical methods can tell us. Glycoconjugate J 15: 209-216. https://doi.org/10.1023/A:1006984709892
  3. Taylor ME, Drickamer K. 2006. Introduction to Glycobiology. 2nd ed. Oxford University Press, Oxford, UK. p 3-16.
  4. Dinesh R, Garud VM, Mamoru K, Balagurunathan K. 2008. Inhibition of heparan sulfate and chondroitin sulfate proteoglycan biosynthesis. J Biol Chem 283: 28881-28887. https://doi.org/10.1074/jbc.M805939200
  5. Mauro PAS, Dietrich CP. 1979. Chondroitin sulfates of the epiphysial cartila ages of different mammals. Comp Biochem Physiol Part B 62: 115-117. https://doi.org/10.1016/0305-0491(79)90023-3
  6. Sampaio LO, Dietrich CP. 1981. Changes of sulfated mucopolysaccharides and mucopolysaccharides during fetal development. J Biol Chem 256: 9205-9210.
  7. Sekino T, Murata K, Saito Y, Tsubura K. 1977. A study of acidic glycosaminoglycans in human gastric tissue. Digestion 16: 28-29. https://doi.org/10.1159/000198052
  8. Hata RI, Nagai Y. 1978. A low-sulfated chondroitin sulfate in human blood and urine. Biochem Biophys Acta 543: 156-166. https://doi.org/10.1016/0304-4165(78)90061-2
  9. Yonekura H, Oguri K, Nakazawa K, Shimizu S, Nakanish Y, Okayma M. 1982. Isolation and partial characterization of sulfated glycoproteins synthesized by corneal epithelium. J Biol Chem 257: 11166-11175.
  10. Nadanaka S, Sugahara K. 1997. The unusual tetrasaccharide sequence GlcA${\beta}1$-3GalNAc(4-sulfate)${\beta}1$-4GlcA(2-sulfate)${\beta}1$-3GalNAc(6-sulfate) found in the hexasaccharides prepared by testicular hyaluronidase digestion of shark cartilage chondroitin sulfate D. Glycobiology 7: 253-263. https://doi.org/10.1093/glycob/7.2.253
  11. Cassaro CMF, Dietrich CP. 1997. Distribution of sulfated mucopolysaccharide in invertebrates. J Biol Sci 252: 2254-2261.
  12. Kawai Y, Seno N, Anno K. 1966. Chondroitin polysulfate of squid cartilage. J Biochem 60: 317-321. https://doi.org/10.1093/oxfordjournals.jbchem.a128438
  13. Moon JH, Ryu HS, You BJ, Moon SK. 1996. Physicochemical properties and dietary effect of glycoprotein from sea cucumber (Stichopus japonicus). J Korean Soc Food Sci Nutr 25: 240-248.
  14. Ryu HS, Moon JH, Suh JS. 1997. Chemical compositions of glycoprotein and chondroitin sulfates from sea cucumber (Stichopus japonicus). J Korean Soc Food Sci Nutr 26: 72-80.
  15. Moon JH, Ryu HS, Yang HS, Suh JS. 1998. Antimutagenic and anticancer effects of glycoprotein and chondroitin sulfates from sea cucumber (Stichopus japonicus). J Korean Soc Food Sci Nutr 27: 350-358.
  16. Vieira RP, Mulloy B, Mourao PAS. 1991. Structure of a fucose-branched chondroitin sulfate from sea cucumber. J Biol Chem 266: 13530-13536.
  17. Humphries DE, Wong GW, Friend DS, Gurish MF. 1999. Heparin is essential for the storage of specific granule proteases in mast cells. Nature 400: 769-772. https://doi.org/10.1038/23481
  18. Tusar KG, Douglas MT. 2006. Placental dermatan sulfate: isolation, anticoagulant activity, and association with heparin cofactor II. J Blood 107: 2753-2758. https://doi.org/10.1182/blood-2005-09-3755
  19. Hovingh P, Piepkom M, Linker A. 1986. Biological implications of the structural, antithrombin affinity and anticoagulant activity relationships among vertebrate heparins and heparin sulfates. J Biochem 237: 573-581. https://doi.org/10.1042/bj2370573
  20. Kwon OK, Min DK, Lee JR, Lee JS, Je JG, Choe BL. 2001. Korean mollusks with color illustration. Hangul press, Busan, Korea. p 179
  21. Yamada K, Ojika M, Ishigaki T, Yoshida Y. 1993. Aplyronine A, a potent antitumor substance, and the congeners aplyronines B and C isolated from the sea hare Aplysia kurodai. J Am Chem Soc 115: 11020-11021. https://doi.org/10.1021/ja00076a082
  22. Kigoshi H, Suenaga K, Mutou T, Ishigaki T, Atsumi T, Ishiwata H, Sakakura A, Ogawa T, Ojika M, Yamada K. 1996. Aplyronine A, a potent antitumor substance of marine origin, aplyronines B and C, and artificial analogues: Total synthesis and structure-cytotoxicity relationship. J Org Chem 61: 5326-5351. https://doi.org/10.1021/jo9606113
  23. Kuroda T, Suenaga K, Sakakura A, Handa T, Okamoto K, Kigoshi H. 2006. Study of the interaction between actin and antitumor substance aplyronine A with a novel fluorescent photoaffinity probe. Bioconjug Chem 17: 524-529. https://doi.org/10.1021/bc050324i
  24. Melo VMM, Duarte ABG, Carvalho AFFU, Siebra EA, Vasconcelos IM. 2000. Purification of a novel antibacterial and haemagglutinating protein from the purple gland of the sea hare, Aplysia dactylomela Rang, 1828. Toxicon 38: 1415-1427. https://doi.org/10.1016/S0041-0101(99)00234-2
  25. Vilim FS, Cropper EC, Rosen SC, Tenenbaum R, Kupfermann I, Weiss KR. 1994. Structure, localization, and action of buccalin B: A bioactive peptide from Aplysia. Peptides 15: 959-969. https://doi.org/10.1016/0196-9781(94)90058-2
  26. Morishita F, Sasaki K, Kanemaru K, Nakanishi Y, Matsushima O, Furukawa Y. 2001. NdWFamide: A novel excitatory peptide involved in cardiovascular regulation of Aplysia. Peptides 22: 183-189. https://doi.org/10.1016/S0196-9781(00)00375-2
  27. Hovingh P, Linker A. 1998. Glycosaminoglycans in two mollusks, Aplysia californica and Helix aspersa, and in the leech, Nephelopsis obscura. Comp Biochem Physiol B 119: 691-696. https://doi.org/10.1016/S0305-0491(98)00044-3
  28. AOAC. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 868-931.
  29. Folch J, Lees M, Sloane-Stanley GH. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226: 497-509.
  30. Mauro SGP, Rodolpho M, Cludio A, Silva AV. 1998. Highly sulfated dermatan sulfates from ascidians. J Biol Chem 264: 9972-9979.
  31. Bitter T, Muir HM. 1962. A modified uronic acid carbazole reaction. Anal Biochem 4: 330-334. https://doi.org/10.1016/0003-2697(62)90095-7
  32. Frederik MA, Roger B, Robert EK, David DM. 2000. Preparation and analysis of glycoconjugates (Chapter 17). In Current Protocols in Molecular Biology. John Wiley & Sons, Inc., Hoboken, NJ, USA. p 17.9.
  33. Yoon BY, Choi BD, Choi YJ. 2010. Extraction of glycosaminoglycans from sea hare, Aplysia kurodai, and its functional properties 1. Optimum extraction of polysaccharide and purification of glycosaminoglycan. J Korean Soc Food Sci Nutr 39: 1640-1646. https://doi.org/10.3746/jkfn.2010.39.11.1640
  34. Saguer E, Fort N, Alvarez PA, Sedman J, Ismail AA. 2008. Structure-functionality relationships of porcine plasma proteins probed by FTIR spectroscopy and texture analysis. Food Hydrocolloids 22: 459-467. https://doi.org/10.1016/j.foodhyd.2007.01.004
  35. Thygesen LG, Lokke MM, Micklander E, Engelsen SB. 2003. Vibrational microspectroscopy of food. Raman vs. FT-IR. Trends Food Sci Technol 14: 50-57. https://doi.org/10.1016/S0924-2244(02)00243-1
  36. Perez-Villar J, Hill RL. 1999. The structure and assembly of secreted mucins. J Biol Chem 274: 31751-31754. https://doi.org/10.1074/jbc.274.45.31751
  37. Anderson RGV. 1998. The caveolae membrane system. Annual Review Biochem 67: 199-225. https://doi.org/10.1146/annurev.biochem.67.1.199

Cited by

  1. Immune Regulating Effect of Polysaccharide Fraction from Sea Hare (Aplysia kurodai) vol.40, pp.3, 2011, https://doi.org/10.3746/jkfn.2011.40.3.372
  2. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2009-2010 vol.34, pp.3, 2015, https://doi.org/10.1002/mas.21411