DOI QR코드

DOI QR Code

Development of Subsection Division Method to Estimate a Composite Roughness Coefficient

복합 조도계수 산정을 위한 단면 분할기법 개발

  • Kim, Ji-Sung (River & Coast Research Division, Korea Institute of Construction Technology) ;
  • Kim, Keuk-Soo (River & Coast Research Division, Korea Institute of Construction Technology) ;
  • Kim, Won (River & Coast Research Division, Korea Institute of Construction Technology)
  • 김지성 (한국건설기술연구원 하천해안항만연구실) ;
  • 김극수 (한국건설기술연구원 하천해안항만연구실) ;
  • 김원 (한국건설기술연구원 하천해안항만연구실)
  • Received : 2010.03.09
  • Accepted : 2010.10.25
  • Published : 2010.11.30

Abstract

Practically, the composite roughness coefficient, which is the equivalent roughness coefficient of a cross-section where the wall roughness is not constant along the wetted perimeter, is used to describe the flow conditions in open channels. In this study, it was conducted that the previous formulae was classified according to a weighting factor of the local resistance. The new subsection division method was also developed based on the force-balance concept in each subsection. The accuracy of the proposed method was examined and the applicability and limitation of the 13 existing formulae were analyzed by comparing the calculated with the experimental measured data from Djajadi (2009) and Knight and Macdonald (1979). It was found that Horton's method might underestimate the total conveyance of a composite channel and Lotter's method showed a good agreement between calculated and measured data. However, the proper division method, such as the proposed method based on the Z-method, is required for the application of Lotter's method.

실무적 목적으로 횡방향으로 흐름저항 요소가 변화하는 단면에서는 단면전체의 저항을 반영할 수 있는 복합 조도계수를 산정함으로써 개수로 흐름해석에 사용하고 있다. 본 연구에서는 기존 복합 조도계수 산정식을 가중치 부여방법에 따라 구분하고, 최적의 복합 조도계수 값을 산정하기 위하여 각 소단면 내에서 힘의 균형을 고려한 단면분할기법을 개발하였다. Djajadi (2009)와 Knight and Macdonald (1979)의 수리실험에 의한 실측 복합 조도계수와 비교함으로써 개발된 단면분할기법의 정확성과 타당성을 검증하였으며, 더불어 기존 13개 복합 조도계수 산정식들의 한계 및 적용성을 분석하였다. 분석결과, 대표적인 복합 조도계수 산정식인 Horton 방법은 단면의 통수능을 과소평가할 수 있으며, Lotter 방법은 실측치와 잘 일치하는 결과를 제공할 수 있으나, 선행조건으로 본 연구에서 제안된 Z-method에 근거한 방법처럼 적합한 단면분할방법이 사용되어야 함을 알 수 있었다.

Keywords

References

  1. 김 원, 김양수, 우효섭(1995). "부정류 모형을 이용한 한강 하류부 하도의 조도계수 산정." 한국수자원학회논문집, 한국수자원학회, 제28권, 제6호, pp. 133-146.
  2. 김지성, 김용전, 이찬주, 김 원(2009). "등가조고를 이용한 자갈하천의 하상저항 산정." 한국수자원학회논문집, 한국수자원학회, 제42권, 제8호, pp. 619-629. https://doi.org/10.3741/JKWRA.2009.42.8.619
  3. 김지성, 이찬주, 김 원(2007). "실측 수위에 의한 자갈하천의 조도계수 산정." 한국수자원학회논문집, 한국수 자원학회, 제40권, 제10호, pp. 755-768. https://doi.org/10.3741/JKWRA.2007.40.10.755
  4. 황의준, 전경수(1997). "한강 본류에 대한 부정류 계산모형 : 모형의 보정." 한국수자원학회논문집, 한국수자원학회, 제30권, 제5호, pp. 549-559.
  5. Chow, V.T. (1959). Open-Channel Hydraulics, McGraw-Hill, New York.
  6. Colebatch, G.T. (1941). "Model Tests on the Lawrence Canal Roughness Coefficients." J. Inst. Civil Eng. (Australia), Vol. 13, No. 2, pp. 27-32.
  7. Cox, R.G. (1973). "Effective Hydraulic Roughness for Channels having Bed Roughness different from Bank Roughness." Misc. Paper H-73-2, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Miss.
  8. Djajadi, R. (2009). "Comparative Study of Equivalent Manning Roughness Coefficient for Channel with Composite Roughness." Civil Engineering Dimension, Vol. 11, No. 2, pp. 113-118.
  9. Felkel, K. (1960). "Gemessene Abflusse in Gerinnen mit Weidenbewuchs." Mitteilungen der BAW, Heft 15, Karlsruhe, Germany.
  10. Fread, D.L., and Lewis, J.M. (1998). NWS FLDWAV Model, Hydrologic Research Laboratory Office of Hydrology National Weather Service, NOAA.
  11. FHorton, R.E. (1933). "Separate Roughness Coefficients for Channel Bottoms and Sides." Eng. News-Rec., Vol. 111, No. 22, pp. 652-653.
  12. Knight, D.W. (1981). "Boundary Shear in Smooth and Rough Channels." Journal of the Hydraulic Division, Vol. 107, No. HY7, pp. 839-851.
  13. Knight, D.W., and Macdonald, J.A. (1979). "Hydraulic Resistance of Artificial Strip Roughness." Journal of the Hydraulic Division, Vol. 105, No. HY6, pp. 675-690.
  14. Krishnamurthy, M., and Christensen, B.A. (1972). "Equivalent Roughness for Shallow Channels." Journal of the Hydraulics Division, ASCE, Vol. 98, No. HY12, pp. 2257-2263.
  15. Lotter, G.K. (1933). "Soobrazheniia k Gidravlicheskomu Raschetu Rusel s Razlichnoi Sherokhovatostiiu Stenok." (Considerations on hydraulic design of channels with different roughness of walls.), Izvestiia Vsesoiuznogo Nauchno-Issledovatel’skogo Instituta Gidrotekhniki (Trans. All-Union Sci. Res. Inst. Hydraulic Eng.), Leningrad, Vol. 9, pp. 238-241.
  16. Maghrebi, M.F. (2006). "Application of the Single Point Measurement in Discharge Estimation." Advances in Water Resources, Vol. 29, pp. 1504-1514. https://doi.org/10.1016/j.advwatres.2005.11.007
  17. Motayed, A.K., and Krishnamurthy, M. (1980). "Composite Roughness of Natural Channels." Journal of the Hydraulic Division, Vol. 106, No. HY6, pp. 1111-1116.
  18. Pavlovskii, N.N. (1931). "K Voporosu o Raschetnoi dlia Ravnomernogo Dvizheniia v Vodotokahk s Neodnorodnymi Stenkami." (On a design formula for uniform flow in channels with nonhomogeneous walls.) Izvestiia Vsesoiuznogo Nauchno-Issledovatel' skogo Instituta Gidrotekhniki (Trans. All-Union Sci. Res. Inst. Hydraulic Eng.), Leningrad, Vol. 3, pp. 157-164.
  19. Yen, B.C. (1992). Channel Flow Resistance: Centennial of Manning's Formula, Water Resources Publications, Littleton, Colorado.
  20. Yen, B.C. (2002). "Open Channel Flow Resistance." Journal of Hydraulic Engineering, Vol. 128, No. 1, pp. 20-39. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(20)
  21. Yen, C.L., and Ho, S.Y. (1983). Discussion of "Discharge Assessment in Compound Channel Flow." Journal of the Hydraulic Division, ASCE, Vol. 109, No. 11, pp. 1561-1567. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:11(1561)