DOI QR코드

DOI QR Code

Microstructure and Permeability Property of Si Bonded Porous SiC with Variations in the Carbon Content

Si 결합 다공성 탄화규소의 미세구조 및 통기도 특성 -카본 함량 변화 중심

  • Song, In-Hyuck (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Park, Mi-Jung (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Kim, Hai-Doo (Engineering Ceramics Group, Korea Institute of Materials Science) ;
  • Kim, Young-Wook (Department of Materials Science and Engineering, The University of Seoul) ;
  • Bae, Ji-Soo (YJC Co. Ltd.)
  • 송인혁 (재료연구소 엔지니어링세라믹연구그룹) ;
  • 박미정 (재료연구소 엔지니어링세라믹연구그룹) ;
  • 김해두 (재료연구소 엔지니어링세라믹연구그룹) ;
  • 김영욱 (서울시립대학교 신소재공학과) ;
  • 배지수 ((주) 와이제이씨)
  • Received : 2010.10.10
  • Accepted : 2010.10.28
  • Published : 2010.11.30

Abstract

The achievement of high gas permeability is a key factor in the development of porous SiC ceramics for applications of hot gas filter, vacuum chuck, and air spindle. However, few reports on the gas permeability of porous SiC ceramics can be found in the literature. In this paper, porous SiC ceramics were fabricated at temperatures ranging from $1600^{\circ}C$ to $1800^{\circ}C$ using the mixing powders of SiC, silicon, carbon and boron as starting materials. In some samples, expanded hollow microspheres as a pore former were used to make a cellular pore structure. It was possible to produce Si bonded SiC ceramics with porosities ranging from 42% to 55%. The maximum bending strength was 58MPa for the carbon content of 0.2 wt% and sintering temperature of $1700^{\circ}C$. The increase of air permeability was accelerated by addition of hollow microsphere as a pore former.

Keywords

References

  1. J. Saggio-Woyansky, C. E. Scott, and W. P. Minnear, “Processing of Porous Ceramics,” Am. Ceram. Soc. Bull., 71 [11] 1674-82 (1992).
  2. P. Sepulveda, “Gelcasting Foams for Porous Ceramics,” Am. Ceram. Soc. Bull., 76 [10] 61-5 (1997).
  3. I. H. Song, I. M. Kwon, H. D. Kim, and Y. W. Kim, “Processing of Microcellular Silicon Carbide Ceramics with a Duplex Pore Structure,” J. Eur. Ceram. Soc., 30 2671-76 (2010) https://doi.org/10.1016/j.jeurceramsoc.2010.04.027
  4. H Osada, A Kani, S Katayama, T Koga, and K Ishizaki, “Bending Strength and Electrical Resistivity of Porous Si-SiC Ceramics,” Ceram. Trans., 31 243-51 (1992).
  5. K. S. Seo, S. W. Park, and H. B. Kwon, “Fabrication of Porous RBSC by Si Melt Infiltration,” J. Kor. Ceram. Soc., 37 [11] 1119-25 (2000).
  6. G. S. Cho, G. M. Kim, and S. W. Park, “Fabrication of Porous Reaction Bonded Silicon Carbide with Multi-Layered Pore Structure,” J. Kor. Ceram. Soc., 46 [5] 534-39 (2009). https://doi.org/10.4191/KCERS.2009.46.5.534
  7. S. H. Yun, P. H. Tan, Y. D. Kim, and S. W. Park, “Effects of Amount of Carbon Source and Infiltrated Si on the Porosity and Fracture Strength of Porous Reaction Bonded SiC,” J. Kor. Ceram. Soc., 44 [7] 381-86 (2007). https://doi.org/10.4191/KCERS.2007.44.7.381
  8. F. J. Dias, M. Kampel, and H. Luhleich, “Method of Producing Permeable, Porous Molded Bodies of Silicon Carbide,” US Patent 4532091 (1985).
  9. T. Tamamizu, K. Sato, T. Tanaka, and S. Sato, “Sintered Silicon Carbide Porous Body Impregnated with Metallic Silicon,” US Patent 4710428 (1987).
  10. A. K. Gupta, E. Gyarmati, H. Kreutz, R. Munzer, A. Naoumidis, and H. Nickel, “Method of Making Porous Silicon Carbide Bodies,” US Patent 4564496 (1985).
  11. C. R. Morelock, “Method for Making Shaped Silicon-Silicon Carbide Refractories,” US. Patent 4385020 (1983).
  12. K. Y. Lim, Y. W. Kim, S. K. Woo, and I. S. Han, “Effect of Carbon Source on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics,” J. Kor. Ceram. Soc., 45 [7] 430-37 (2008). https://doi.org/10.4191/KCERS.2008.45.7.430
  13. K. Y. Lim, Y. W. Kim, S. K. Woo, and I. S. Han, “Effect of Aluminum Addition on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics,” J. Kor. Ceram. Soc., 46 [5] 520-24 (2009). https://doi.org/10.4191/KCERS.2009.46.5.520
  14. Y. W. Kim and J. G. Lee, “Effect of Polycarbosilane Addition on Mechanical Properties of Hot-pressed Silicon Carbide,” J. Mater. Sci., 27 [17] 4746-50 (1992). https://doi.org/10.1007/BF01166016
  15. J. F. Shackelford and W. Alexander, Ed, “Thermodynamic and Kinetic Data,” p. 302 in Materials Science and Engineering Handbook, third edition, CRC Press, USA, 2000.
  16. S. Ding, Y. P. Zeng, and D. Jiang, “In-situ Reaction Bonding of Porous SiC Ceramics,” Mater. Character, 59 140-42 (2008). https://doi.org/10.1016/j.matchar.2006.12.002
  17. S. Ding, Y. P. Zeng, and D. Jiang, “Thermal Shock Resistance of In-situ Reaction Bonded Porous Silicon Carbide Ceramics,” Mater. Sci. Eng. A, 425 326-29 (2006). https://doi.org/10.1016/j.msea.2006.03.075
  18. S. Liu, Y. P. Zeng, and D. Jiang, “Fabrication and Characterization of Cordierite-bonded Porous SiC Ceramics,” Ceram. Int. 35 597-602 (2009). https://doi.org/10.1016/j.ceramint.2008.01.025
  19. G. W. Liu, M. L. Muolo, F. Valenza, and A. Passerone, “Survey on Wetting of SiC by Molten Metals,” Ceram. Int., 36 1177-88 (2010). https://doi.org/10.1016/j.ceramint.2010.01.001
  20. K. S. Seo, S. W. Park, and H. S. Song, “${\beta}$-SiC Formation Mechanisms in Si Melt-C-SiC System,” J. Kor. Ceram. Soc., 36 [6] 655-61 (1999).

Cited by

  1. Flexural Strength of Macroporous Silicon Carbide Ceramics vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.360
  2. Effects of Pre-sintered Granules on the Characteristics of Porous Zirconia vol.49, pp.6, 2012, https://doi.org/10.4191/kcers.2012.49.6.566
  3. Optimization for Permeability and Electrical Resistance of Porous Alumina-Based Ceramics vol.53, pp.5, 2016, https://doi.org/10.4191/kcers.2016.53.5.548
  4. The Effect of MnO2 Content on the Permeability and Electrical Resistance of Porous Alumina-Based Ceramics vol.54, pp.4, 2017, https://doi.org/10.4191/kcers.2017.54.4.07