DOI QR코드

DOI QR Code

Fabrication and Properties of Reactively Hot Pressed HfB2-HfC Ultra-High Temperature Ceramics

  • Lee, Seung-Jun (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Seong, Young-Hoon (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Baek, Seung-Su (Agency for Defence Development (ADD)) ;
  • Kang, Eul-Son (Agency for Defence Development (ADD)) ;
  • Kim, Do-Kyung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2010.10.09
  • Accepted : 2010.11.08
  • Published : 2010.11.30

Abstract

$HfB_2$-HfC composites were prepared by reactive hot pressing using Hf and $B_4C$ at temperatures of 1800 and $1900^{\circ}C$ for 60 min under 32 MPa in an Ar atmosphere. The reaction sequences of the $HfB_2$-HfC composite were studied through series of pressureless heat treatments ranging from 800 to $1600^{\circ}C$. The effect of size reduction of the starting powders on densification was investigated by vibration milling. Fully dense $HfB_2$-HfC composites were obtained by size reduction of the starting powders via vibration milling. The oxidation behaviour of the $HfB_2$-HfC composites at $1500^{\circ}C$ in air showed formation of a non-protective $HfO_2$ scale with linear mass gain. Examination of the mechanical properties showed that particle size reduction via vibration milling also led to improved flexural strength, hardness and fracture toughness.

Keywords

References

  1. F. Monteverde and A. Bellosi, “The Resistance to Oxidation of an $HfB_2$-SiC Composite,” J. Eur. Ceram. Soc., 25 1025-31 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.05.009
  2. S-. K. Woo, I-. S. Han, H-. S. Kim, E- S. Kang, J-. H. Yang, and C-. H. Kim, “Sintering of Zirconium Diboride through Fe-based Liquid Phase,” J. Kor. Ceram. Soc., 33 259-68 (1996).
  3. A. Rezaie, W. G. Fahrenholtz, and G. E. Hillmas, “Evolution of Structure During the Oxidation of Zirconium Diboride-Silicon Carbide in Air up to 1500${\circ}$C,” J. Eur. Ceram. Soc., 27 2495-501 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.10.012
  4. S. J. Lee, E. S. Kang, S. S. Baek, and D. K. Kim, “Reactive Hot Pressing and Oxidation Behavior of Hf-based Ultra-High-Temperature Ceramics,” Surf. Rev. Lett., 17 215-21 (2010). https://doi.org/10.1142/S0218625X10013886
  5. D. M. Van Wie, D. G. Drewry Jr., D. E. King, and C. M. Hudson, “The Hypersonic Environment: Required Conditions and Design Challenges,” J. Mater. Sci., 39 5915-24 (2004). https://doi.org/10.1023/B:JMSC.0000041688.68135.8b
  6. S. C. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, “Pressureless Densification of Zirconium Diboride with Boron Carbide Additions,” J. Am. Ceram. Soc., 89 1544-50 (2006). https://doi.org/10.1111/j.1551-2916.2006.00949.x
  7. S. C. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, “Pressureless Sintering of $ZrB_2$-SiC Ceramics,” J. Am. Ceram. Soc., 91 26-32 (2008). https://doi.org/10.1111/j.1551-2916.2007.02006.x
  8. D. Sciti, S. Guicciardi, and A. Bellosi, “Properties of a Pressureless-Sintered $ZrB_{2}-MoSi_{2}$ Ceramic Composite,” J. Am. Ceram. Soc., 89 2320-22 (2006).
  9. W-. W Wu, G-. J. Zhang, Y-. M. Kan, and P-. L. Wang, “Reactive Hot Pressing of $ZrB_2$-SiC-ZrC Ultra High–Temperature Ceramics at 1500${\circ}$C,” J. Am. Ceram. Soc., 89 2967-69 (2006).
  10. G-. J. Zhang, Z-. Y. Deng, N. Kondo, J-. F. Yang, and T. Ohji, “Reactive Hot Pressing of $ZrB_2$-SiC Composites,” J. Am. Ceram. Soc., 83 2330-32 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01558.x
  11. F. Monteverde, “Progress in the Fabrication of Ultra-High-Temperature Ceramics: “in situ” Synthesis, Microstructure and Properties of a Reactive Hot-Pressed $HfB_2$-SiC Composite,” Compos. Sci. Technol., 65 1869-79(2005). https://doi.org/10.1016/j.compscitech.2005.04.003
  12. S. J. Lee and D. K. Kim, “Effect of $TaB_2$ Addition on the Oxidation Behaviors of $ZrB_2$-SiC based Ultra-High Temperature Ceramics,” Kor. J. Mater. Res., 20 217-22 (2010). https://doi.org/10.3740/MRSK.2010.20.4.217
  13. J. Han, P. Hu, X. Zhang, S. Meng, and W. Han, “Oxidation-Resistant $ZrB_2$-SiC Composites at 2200${\circ}$C,” Compos. Sci. Technol., 68 799-806 (2008). https://doi.org/10.1016/j.compscitech.2007.08.017
  14. A. Rezaie, W. G. Fahrenholtz, and G. E. Hillmas, “Oxidation of Zirconium Diboride-Silicon Carbide at 1500${\circ}$C at a Low Partial Pressure of Oxygen,” J. Am. Ceram. Soc., 89 3240-45 (2006). https://doi.org/10.1111/j.1551-2916.2006.01229.x
  15. D. K. Shetty, I. G. Wright, P. N. Mincer, and A. H. Clauer, “Indentation Fracture of WC-Co Cermets,” J. Mater. Sci., 20 1873-82 (1985). https://doi.org/10.1007/BF00555296
  16. M. J. Gasch, D. T. Ellerby, and S. M. Johnson, “Handbook of Ceramics Composites,” Springer, Chap 9 197-224 (2005).
  17. B. Cech, P. Oliverus, and J. Sejbal, “Sintering of Zirconium Boride with Activating Additions,” Powder Metall., 8 142-51 (1965). https://doi.org/10.1179/pom.1965.8.15.009
  18. P. Lespade, N. Richet, and P. Goursat, “Oxidation Resistance of $HfB_2$-SiC Composites for Protection of Carbonbased Materials,” Acta Astronaut., 60 858-64 (2007). https://doi.org/10.1016/j.actaastro.2006.11.007
  19. Y. V. Milman, S.I. Chugnova, I.V. Goncharova, T. Chudoba, W. Lojkowski, and W. Gooch, “Temperature Dependence of Hardness in Silicon-Carbide Ceramics with Different Porosity,” Int. J. Refract. Met. H., 17 361-68 (1999). https://doi.org/10.1016/S0263-4368(99)00022-0

Cited by

  1. Promising ultra-high-temperature ceramic materials for aerospace applications vol.58, pp.14, 2013, https://doi.org/10.1134/S0036023613140039