DOI QR코드

DOI QR Code

Effect of Frit Content on Microstructure and Flexural Strength of Porous Frit-Bonded Al2O3 Ceramics

Frit 함량이 다공질 Frit-Bonded 알루미나 세라믹스의 미세조직과 꺾임강도에 미치는 영향

  • Lim, Kwang-Young (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Kim, Young-Wook (Functional Ceramics Laboratory, Department of Materials Science and Engineering, The University of Seoul) ;
  • Song, In-Hyuck (Powder Materials Research Division, Korea Institute of Materials Science) ;
  • Kim, Hai-Doo (Powder Materials Research Division, Korea Institute of Materials Science) ;
  • Bae, Ji-Soo (YJC Co., Ltd.)
  • 임광영 (서울시립대학교 신소재공학과 기능성세라믹스연구실) ;
  • 김영욱 (서울시립대학교 신소재공학과 기능성세라믹스연구실) ;
  • 송인혁 (재료연구소(KIMS)) ;
  • 김해두 (재료연구소(KIMS)) ;
  • 배지수 ((주)와이제이씨)
  • Received : 2010.10.08
  • Accepted : 2010.11.09
  • Published : 2010.11.30

Abstract

Porous frit-bonded alumina ceramics were fabricated using alumina and frit as raw materials. The effects of frit content and sintering temperature on microstructure, porosity, and flexural strength were investigated at low temperature of $750{\sim}850^{\circ}C$. Increased addition of frit content or higher sintering temperature resulted in improved flexural strength of porous frit-bonded alumina ceramics. It was possible to produce frit-bonded alumina ceramics with porosities ranging from 35% to 40%. A maximum strength of 52MPa was obtained at a porosity of ~38% when 90 wt% alumina and 10 wt% frit powders were used.

Keywords

References

  1. H. C. Shin, W. S. Cho, S. Y. Shin, and J. G. Kim, “Fabrication of Porous Alumina Ceramics by Spark Plasma Sintering (in Korean),” J. Kor. Ceram. Soc., 39 [12] 1183-89 (2002). https://doi.org/10.4191/KCERS.2002.39.12.1183
  2. S. J. Lee and H. D. Kim, “Fabrication of Porous $Al_{2}O_{3}$ Ceramics Using Thermoplastic Polymer (in Korean),” J. Kor. Ceram. Soc., 41 [7] 513-17 (2004). https://doi.org/10.4191/KCERS.2004.41.7.513
  3. I. C. Kang, S. H. Cho, H. Y. Song, and B. T. Lee, “Fabrication of Continuously Porous Alumina Bodies by Multi-Extrusion Process and Their In-vitro and In-vivo Study for Biocompatibility (in Korean),” J. Kor. Ceram. Soc., 41 [7] 560-66 (2004). https://doi.org/10.4191/KCERS.2004.41.7.560
  4. K. S. Kim, K. Y. Song, S. Y. Park, S. Kim, S. J. Kim, and S. O. Yoon, “Properties of Low Temperature Sintered Porous Ceramics from Alumina-Zinc Borosilicate Glass (in Korean),” J. Kor. Ceram. Soc., 46 [6] 609-14 (2009). https://doi.org/10.4191/KCERS.2009.46.6.609
  5. A. L. Ahmad, C. P. Leo, and S. R. A. Shukor, “Tailoring of a ${\gamma}$-Alumina Membrane with a Bimodal Pore Size Distribution for Improved Permeability,” J. Am. Ceram. Soc., 91 [1] 246-51 (2008). https://doi.org/10.1111/j.1551-2916.2007.02095.x
  6. K. Y. Lim, Y.-W. Kim, S. K. Woo, and I. S. Han, “Effect of Si:C Ratio on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics (in Korean),” J. Kor. Ceram. Soc., 45 [5] 285-89 (2008). https://doi.org/10.4191/KCERS.2008.45.5.285
  7. K. Y. Lim, Y.-W. Kim, S. K. Woo, and I. S. Han, “Effect of Carbon Source on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics (in Korean),” J. Kor. Ceram. Soc., 45 [7] 430-37 (2008). https://doi.org/10.4191/KCERS.2008.45.7.430
  8. J. H. Eom and Y.-W. Kim, “Effect of Additive Composition on Microstructure and Strength of Porous Silicon Carbide Ceramics,” J. Mater. Sci., 44 4482-86 (2009). https://doi.org/10.1007/s10853-009-3638-x
  9. D. Chakravarty, H. Ramesh, and T. N. Rao, “High Strength Porous Alumina by Spark Plasma Sintering,” J. Eur. Ceram. Soc., 29 1361-69 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.08.021
  10. K. Kamitani, T. Hykeo, Y. Shimizu, and M. Egashira, “Fabrication of Porous Alumina Ceramics Having Cell Windows with Controlled Size by PMMA Template Method,” J. Mater. Sci., 45 3602-9 (2010). https://doi.org/10.1007/s10853-010-4406-7
  11. Y. S. Han, J. B. Li, and Y. J. Chen, “Fabrication of Bimodal Porous Alumina Ceramics,” Mater. Res. Bull., 38 373-79 (2003). https://doi.org/10.1016/S0025-5408(02)01026-7
  12. U. T. Gonzenbach, A. R. Studart, E. Tervoort, and L. J. Gauckler, “Macroporous Ceramics from Particle-Stabilized Wet Foams,” J. Am. Ceram. Soc., 90 16-22 (2007). https://doi.org/10.1111/j.1551-2916.2006.01328.x
  13. W. D. Kingery and M. Berg, “Study of the Initial Stages of Sintering Solids by Viscous Flow, Evaporation-Condensation, and Self-Diffusion,” J. Appl. Phys., 26 1205-12 (1955). https://doi.org/10.1063/1.1721874
  14. S. H. Chae, Y.-W. Kim, I. H. Song, H. D. Kim, and M. Narisawa, “Porosity Control of Porous Silicon Carbide Ceramics,” J. Eur. Ceram. Soc., 29 2867-72 (2009). https://doi.org/10.1016/j.jeurceramsoc.2009.03.027
  15. J. H. Eom and Y.-W. Kim, “Effect of Additives on Mechanical Properties of Macroporous Silicon Carbide Ceramics,” Met. Mater. Int., 16 399-405 (2010). https://doi.org/10.1007/s12540-010-0609-3
  16. S. H. Chae, Y.-W. Kim, I. H. Song, H. D. Kim, J. S. Bae, S. M. Na, and S. I. Kim, “Low Temperature Processing and Properties of Porous Frit-Bonded SiC Ceramics (in Korean),” J. Kor. Ceram. Soc., 46 [5] 488-92 (2009). https://doi.org/10.4191/KCERS.2009.46.5.488

Cited by

  1. Flexural Strength of Macroporous Silicon Carbide Ceramics vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.360
  2. Optimization for Permeability and Electrical Resistance of Porous Alumina-Based Ceramics vol.53, pp.5, 2016, https://doi.org/10.4191/kcers.2016.53.5.548