DOI QR코드

DOI QR Code

The High Density Sintering of Green-emitting β-SiAlON:Eu Ceramic Plate Phosphor

녹색발광 β-SiAlON:Eu 세라믹 플레이트 형광체의 치밀화 소결

  • Park, Young-Jo (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Lee, Sung-Hoon (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Jang, Wook-Kyung (Engineering Ceramics Research Group, Korea Institute of Materials Science) ;
  • Yoon, Chang-Bun (Electro Materials and Device Center, Samsung LED) ;
  • Yoon, Chul-Soo (Electro Materials and Device Center, Samsung LED)
  • 박영조 (한국기계연구원부설 재료연구소 (KIMS)) ;
  • 이성훈 (한국기계연구원부설 재료연구소 (KIMS)) ;
  • 장욱경 (한국기계연구원부설 재료연구소 (KIMS)) ;
  • 윤창번 (삼성엘이디 주식회사) ;
  • 윤철수 (삼성엘이디 주식회사)
  • Received : 2010.09.27
  • Accepted : 2010.10.26
  • Published : 2010.11.30

Abstract

$Eu^{2+}$-doped $\beta$-SiAlONs ($Si_{6-z}Al_zO_zN_{8-z}:Eu_y$) are recognized as promising phosphor materials to build an white LED for lighting application due to its excellent absorption/emission efficiency in the long wave length region. In this research, the fabrication of $\beta$-SiAlON:Eu plate phosphor by sintering was investigated with fixed Eu content(y) and varied composition of the host lattice(z). The addition of the activator $Eu_2O_3$ lead to enhanced densification by forming the transient liquid phase. The refinement of a composition by the calculated lattice parameter indicated that the measured composition of the fabricated specimens is nearly same to that of designed one. The single phase $\beta$-SiAlON:Eu plate with relative density of 96.4% was achieved by addition of 2 wt% CaO, which implies the possibility of full densification by adjusting the processing variables.

Keywords

References

  1. K. J. Choi, S. D. Jee, C. H. Kim, S. H. Lee, and H. K. Kim, “Luminescence Characteristics of $Mg^{2+}.Ba^{2+}$ Co-doped $Sr_{2}SiO_{4}$:Eu Yellow Phosphor for Light Emitting Diodes,” J. Kor. Ceram. Soc., 44 [3] 147-51 (2007). https://doi.org/10.4191/KCERS.2007.44.3.147
  2. H. Gerard, B. Serge, and P. Mark, “White LED for Backlight with Phosphor Plates,” US patent 20070215890, Philips lumileds lighting Company, LLC (2007).
  3. J. W. H. van Krevel, J. W. T. van Rutten, H. Mandal, H. T. Hintzen, and R. Metselaar, “Luminescence Properties of Terbium-, Cerium, or Europium-Doped ${\alpha}$-Sialon Materials,” J. Solid State Chem., 165 19-24 (2002). https://doi.org/10.1006/jssc.2001.9484
  4. R. -J. Xie, M. Mitomo, K. Uheda, F. F. Xu, and Y. Akimune, “Preparation and Luminescence Spectra of Calcium- and Rare-Earth (R=Eu, Tb, and Pr)-Codoped ${\alpha}$-SiAlON Ceramics,” J. Am. Ceram. Soc., 85 [5] 1229-34 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00250.x
  5. R. -J. Xie, N. Hirosaki, K. Sakuma, Y. Yamamoto, and M. Mitomo, “$Eu^{2+}$-doped Ca-${\alpha}$-SiAlON: A Yellow Phosphor for White Light-emitting Diodes,” Appl. Phys. Lett., 84 26-8, 5404-06 (2004).
  6. R. -J. Xie, N. Hirosaki, M. Mitomo, Y. Yamamoto, T. Suehiro, and K. Sakuma, “Optical Properties of $Eu^{2+}$ in ${\alpha}$-SiAlON,” J. Phys. Chem. B, 108 12027-31 (2004). https://doi.org/10.1021/jp048295g
  7. N. Hirosaki, R. -J. Xie, K. Kimoto, T. Sekiguchi, Y. Yamamoto, T. Suehiro, and M. Mitomo, “Characterization and Properties of Green-emitting ${\beta}$-SiAlON:$Eu^{2+}$ Powder Phosphors for White Light-emitting Diodes,” Appl. Phys. Lett., 86 211905 (2005). https://doi.org/10.1063/1.1935027
  8. Y. Q. Li, J. E. J. van Steen, J. W. H. van Krevel, G. Botty, A. C. A. Delsing, F. J. DiSalvo, G. de With, and H. T. Hintzen, “Luminescence Properties of Red-emitting $M_{2}Si_{5}N_{8}:Eu^{2+}$(M=Ca, Sr, Ba) LED Conversion Phosphors,” J. Alloy Comp., 417 273-79 (2006). https://doi.org/10.1016/j.jallcom.2005.09.041
  9. K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, and H. Yamamoto, “Luminescence Properties of a Red Phosphor, $CaAlSiN_{3}:Eu^{2+}$, for White Light-emitting Diodes,” Electrochem. Solid-State Lett., 9 [4] H22-H25 (2006). https://doi.org/10.1149/1.2173192
  10. R. -J. Xie and N. Hirosaki, “Silicon-based Oxynitride and Nitride Phosphors for White LEDs - A Review,” Sci. Tech. Adv. Mater., 8, 588-600 (2007). https://doi.org/10.1016/j.stam.2007.08.005
  11. K. Sakuma, N. Hirosaki, R. -J. Xie, Y. Yamamoto, and T. Suehiro, “Luminescence Properties of (Ca,Y)-${\alpha}$-SiAlON:Eu Phosphors,” Mater. Lett., 61 547-50 (2007). https://doi.org/10.1016/j.matlet.2006.05.019
  12. R. -J. Xie, N. Hirosaki, H. -L. Li, Y. Q. Li, and M. Mitomo, “Synthesis and Photoluminescence Properties of ${\beta}$-sialon:$Eu^{2+}(Si_{6-z}Al_{z}O_{z}N_{8-z}:Eu^{2+})$,” J. Electrochem. Soc., 154 [10] J314-J319 (2007). https://doi.org/10.1149/1.2768289
  13. J. H. Ryu, Y. G. Park, H. S. Won, S. H. Kim, H. Suzuki, and C. Yoon, “Luminescence Properties of $Eu^{2+}$-doped ${\beta}-Si_{6-z}Al_{z}O_{z}N_{8-z}$ Microcrystals Fabricated by Gas Pressured Reaction,” J. Crys. Growth, 311 878-82 (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.107
  14. P. Pettersson, Z. Shen, M. Johnsson, and M. Nygren, “Thermal Shock Properties of ${\beta}$-sialon Ceramics,” J. Eur. Ceram. Soc., 22, 1357-65 (2002). https://doi.org/10.1016/S0955-2219(01)00429-0
  15. T. Ekstrom, P. O. Kall, M. Nygren, and P. O. Olsson, “Dense Single-phase ${\beta}$-sialon Ceramics by Glass-encapsulated Hot Isostatic Pressing,” J. Mater. Sci., 24 1853-61 (1989). https://doi.org/10.1007/BF01105715
  16. C. L. Hewett, Y. B. Cheng, B. C. Muddle, and M. B. Trigg, “Phase Relationships and Related Microstructural Observations in the Ca-Si-Al-O-N System,” J. Am. Ceram. Soc., 81 [7] 1781-88 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02548.x

Cited by

  1. Additives vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.384
  2. Powders vol.24, pp.12, 2014, https://doi.org/10.3740/MRSK.2014.24.12.658
  3. Ions vol.51, pp.1, 2014, https://doi.org/10.4191/kcers.2014.51.1.037
  4. Preparation of Si(Al)ON Precursor Using Organoaluminum Imine and Poly (Phenyl Carbosilane), and the Compositional Change of the Film with Different Heat Treatment Condition vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.243