DOI QR코드

DOI QR Code

Intercalation Voltage and Lithium Ion Conduction in Lithium Cobalt Oxide Cathode for Lithium Ion Battery

리튬 이온 전지용 리튬 코발트 산화물 양극에서의 삽입 전압과 리튬 이온 전도

  • Kim, Dae-Hyun (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Seo, Hwa-Il (School of Information Technology, Korea University of Technology and Education) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • 김대현 (한국기술교육대학교 신소재공학과) ;
  • 김대희 (한국기술교육대학교 신소재공학과) ;
  • 서화일 (한국기술교육대학교 정보기술공학부) ;
  • 김영철 (한국기술교육대학교 신소재공학과)
  • Received : 2010.09.14
  • Accepted : 2010.11.24
  • Published : 2010.11.30

Abstract

We performed a density functional theory study to investigate the intercalation voltage and lithium ion conduction in lithium cobalt oxide for lithium ion battery as a function of the lithium concentration. There were two methods for the intercalation of lithium ions; the intercalation of a lithium ion at a time in the individual layer and the intercalation of lithium ions in all the sites of one layer after all the sites of another layer. The average intercalation voltage was the same value, 3.48 V. However, we found the former method was more favorable than the latter method. The lattice parameter c was increased as the increase of the lithium concentration in the range of x < 0.25 while it was decreased as increase of the lithium concentration in the range of x > 0.25. The energy barrier for the conduction of lithium ion in lithium cobalt oxide was increased as the lithium concentration was increased. We demonstrated that the decrease of the intercalation voltage and increase of the energy barrier as the increase of the lithium concentration caused lower output voltage during the discharge of the lithium ion battery.

본 연구는 밀도 범함수 이론을 이용하여 Li이온전지에 사용되는 Li코발트 산화물에서의 Li이온 삽입 전압과 전도에 관한 것이다. Li이온은 Li코발트 산화물 원자구조의 각 층을 1개씩 채우거나 한 층을 다 채우고 다음 층을 채울 수 있다. 평균 삽입 전압은 3.48V로 동일하나, 전자가 후자보다 더 유리하였다. 격자상수 c는 Li농도가 0.25보다 작을 때는 증가하였으나, 0.25보다 클 때는 감소하였다. Li농도가 증가하면, Li코발트 산화물에서의 Li이온 전도를 위한 에너지 장벽은 증가하였다. Li이온전지가 방전 중 출력 전압이 낮아지는 현상은 Li농도 증가에 따른 삽입 전압의 감소와 전도 에너지 장벽의 증가로 설명할 수 있었다.

Keywords

References

  1. K. S. Kang, Y. S. Meng, J. Breger, C. P. Grey, and G. Ceder, "Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries" Science, 311, 977 (2006). https://doi.org/10.1126/science.1122152
  2. S. Shi, C. Ouyang, M. Lei, and W. Tang, "Effect of Mgdoping on the Structural and Electronic Properties of $LiCoO_2$: A First-principles Investigation" J. Power Sources, 171, 908 (2007). https://doi.org/10.1016/j.jpowsour.2007.07.005
  3. M. Okubo, E. Hosono, J. D. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, and I. Honma, "Nanosize Effect on High-Rate Li-ion Intercalation in $LiCoO_2$ Electrode" J. Am. Chem. Soc., 129, 7444 (2007). https://doi.org/10.1021/ja0681927
  4. Y. Takahashi, N. Kijima, K. Dokko, M. Nishizawa, I. Uchida, and J. Akimoto, "Structure and Electron Density Analysis of Electrochemically and Chemically Delithiated $LiCoO_2$ Single Crystals" J. Solid State Chem., 180, 313 (2007). https://doi.org/10.1016/j.jssc.2006.10.018
  5. J. Xu, H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang, and B. Liang, "A Review of Processes and Technologies for the Recycling of Lithium-ion Secondary Batteries" J. Power Sources, 177, 512 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.074
  6. K. S. Kang and G. Ceder, "Factors that Affect Li Mobility in Layered Lithium Transition Metal Oxides" Phy. Rev. B, 74, 094105-1 (2006). https://doi.org/10.1103/PhysRevB.74.094105
  7. J. Hafner, C. Wolverton, and G. Ceder, "Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research" MRS Bulletin, 31, 659 (2006). https://doi.org/10.1557/mrs2006.174
  8. G. Ceder, M. Doyle, P. Arora, and Y. Fuentes, "Computational Modeling and Simulation for Rechargeable Batteries" MRS Bulletin, 27, 619 (2002). https://doi.org/10.1557/mrs2002.198
  9. C. Wolverton and A. Zunger, "First-principles Theory of Cation and Intercalation Ordering in $Li_xCoO_2$" J. Power Sources, 81-82, 680 (1999). https://doi.org/10.1016/S0378-7753(99)00237-2
  10. A. I. Landa, C. C. Chang, P. N. Kumta, L. Vitos, and I. A. Abrikosov, "Phase Stability of $Li(Mn_{100-x}Co_x)O_2 $Oxides: An Ab Initio Study" Solid State Ionics, 149, 209 (2002). https://doi.org/10.1016/S0167-2738(02)00403-4
  11. D. Kramer and G. Ceder, "Tailoring the Morphology of $LiCoO_2$: A First Principles Study" Chem. Mater., 21, 3799 (2009). https://doi.org/10.1021/cm9008943
  12. M. K. Aydinol, A. F. Kohan, and G. Ceder, "Ab Initio Calculation of the Intercalation Voltage of Lithiumtransition- metal Oxide Electrodes for Rechargeable Batteries" J. Power Sources, 68, 664 (1997). https://doi.org/10.1016/S0378-7753(96)02638-9
  13. A. Van der Ven and G. Ceder, "Lithium Diffusion Mechanisms in Layered Intercalstion Compounds" J. Power Sources, 97-98, 529 (2001). https://doi.org/10.1016/S0378-7753(01)00638-3
  14. G. Kresse and J. Hafner, "Ab Initio Molecular Dynamics for Liquid Metals" Phys. Rev. B, 47, 558 (1993) https://doi.org/10.1103/PhysRevB.47.558
  15. G. Kresse and J. Hafner, "Ab initio molecular-dynamics simulation of the liquid-metalamorphous- semiconductor transition in germanium" Phys. Rev. B, 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251
  16. G. Kresse and J. Furthuller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors using a Plane-wave BASIS Set" Comput. Mat. Sci., 6, 15 (1996). https://doi.org/10.1016/0927-0256(96)00008-0
  17. G. Kresse and J. Furthuller, "Efficient Iterative Schemes for Ab Initio Total-energy Calculations using a Planewave Basis Set" Phys. Rev. B, 54, 11169 (1996). https://doi.org/10.1103/PhysRevB.54.11169
  18. G. Kresse and D. Joubert, "From Ultrasoft Pseudopotentials to the Projector Augmented-wave Method" Phys. Rev. B, 59, 1758 (1999). https://doi.org/10.1103/PhysRevB.59.1758
  19. D. Vanderbilt, "Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism" Phys. Rev. B, 41, 7892 (1990). https://doi.org/10.1103/PhysRevB.41.7892
  20. D. M. Wood and A. Zunger, "A New Method for Diagonalising Large Matrices" J. Phys. A, 18, 1343 (1985). https://doi.org/10.1088/0305-4470/18/9/018
  21. P. Pulay, "Convergence Acceleration in Iterative Sequences: The Case of SCF Iteration" Chem. Phys. Lett., 73, 393 (1980). https://doi.org/10.1016/0009-2614(80)80396-4
  22. Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson, and M. A. O’KEEFE, "Atomic Resolution of Lithium Ions in $LiCoO_2$" Nature Materials, 2, 464 (2003). https://doi.org/10.1038/nmat922
  23. Y. Shao-Horn, S. A. Hackney, A. J. Kahaian, and M. M. Thackeray, "Structural Stability of $LiCoO_2$ at 400oC" J. Solid State Chem., 168, 60 (2002). https://doi.org/10.1006/jssc.2002.9679
  24. D. Sheppard, R. Terrell, and G. Henkelman, "Optimization Methods for Finding Minimum Energy Paths" J. Chem. Phys., 128, 134106 (2008). https://doi.org/10.1063/1.2841941
  25. T. Ohzuku and A. Ueda, "Solid-State Redox Reactions of $LiCoO_2$ (R3m) for 4 Volt Secondary Lithium Cells" J. Electrochem. Soc., 141, 2972 (1994). https://doi.org/10.1149/1.2059267