DOI QR코드

DOI QR Code

Numerical Study of Effects of Operating Conditions on the Performance of High Temperature PEMFC

작동 조건에 따른 고온 고분자 전해질 연료전지의 성능 변화에 대한 전산해석 연구

  • Kim, Kyoung-Youn (Department of Mechanical Engineering, Hanbat National University) ;
  • Sohn, Young-Jun (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Kim, Min-Jin (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Yang, Tae-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research)
  • 김경연 (한밭대학교 기계공학과) ;
  • 손영준 (한국에너지기술연구원 연료전지연구단) ;
  • 김민진 (한국에너지기술연구원 연료전지연구단) ;
  • 양태현 (한국에너지기술연구원 연료전지연구단)
  • Received : 2010.10.21
  • Accepted : 2010.11.16
  • Published : 2010.11.30

Abstract

A two-dimensional isothermal model has been employed for numerical simulations of a high temperature hydrogen fuel cell with proton exchange membrane. The model is validated with existing experimental data and used for examination on the effects of various operating conditions on the fuel cell performance. The present numerical results show that the cell performance increases with increasing exchange current density, ion conductivity of the membrane, inlet gas flow rate as well as operating pressure. Also, higher porosity of gas diffusion layer (GDL) results in higher cell performance due to enhancement of the diffusion through the GDL, where the cathode GDL porosity more influences on the performance as compared with the anode one.

2차원 전산 해석 모델을 사용하여 고온 고분자 전해질 연료전지의 전산해석을 수행하였다. 해석 모델은 기존의 실험데이터와의 비교를 통해 검증하였으며, 다양한 작동 조건이 연료전지의 성능에 미치는 영향을 파악하기 위해 일련의 전산해석을 수행하였다. 본 전산해석의 결과를 통해 교환전류밀도, 이온전도도, 공급유량 및 작동압력이 증가할수록 연료전지의 성능이 향상됨을 확인하였다. 또한, 기체 확산층의 기공율이 높을수록 기체의 확산이 향상되어 연료전지의 성능이 향상되었으며, 양극 기체 확산층의 기공율에 의한 효과가 음극에 비해 더 두드러지게 나타났다.

Keywords

References

  1. X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.-S. Liu, H. Wang, and J. Shen, 'A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation', J. Power Sources, 165, 739 (2007). https://doi.org/10.1016/j.jpowsour.2006.12.012
  2. J. Zhang, Z. Xie, J. Zhang, Y. Tang, C. Song, T. Navessin, Z. Shi, D. Song, H. Wang, D. P. Wilkinson, Z.-S. Liu, and S. Holdcroft, 'High temperature PEM fuel cells', J. Power Sources, 160, 872 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.034
  3. O. Savadogo, 'Emerging membranes for electrochemical systems: Part II. High temperature composite membranes for polymer electrolyte fuel cell (PEFC) applications', J. Power Sources, 127, 135 (2004). https://doi.org/10.1016/j.jpowsour.2003.09.043
  4. X. Cheng, J. Zhang, Y. Tang, C. Song, J. Shen, D. Song, and J. Zhang, 'Hydrogen crossover in high-temperature PEM fuel cells', J. Power Sources, 167, 25 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.027
  5. J. Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares, and G. Manjavacas, 'Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs', J. Membrane Sci., 280, 351 (2006). https://doi.org/10.1016/j.memsci.2006.01.049
  6. D. F. Cheddie and N. D. H. Munroe, 'Three dimensional modeling of high temperature PEM fuel cells', J. Power Sources, 160, 215 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.035
  7. E. U. Ubong, Z. Shi, and X. Wang, 'Three-Dimensional Modeling and Experimental Study of a High Temperature PBI-Based PEM Fuel Cell', J. Electrochem. Soc., 156, B1276 (2009). https://doi.org/10.1149/1.3203309
  8. E. L. Cussler, "Diffusion: Mass transfer in fluid systems", Cambridge Univ Press (2009).
  9. D. A. Nield and A. Bejan, "Convection in porous media", Springer (1999).
  10. M. M. Mench, "Fuel cell engines", Wiley (2008).
  11. F. Y. Zhang, X. G. Yang, and C. Y. Wang, 'Liquid water removal from a polymer electrolyte fuel cell', J. Electrochem. Soc., 153, A225 (2006). https://doi.org/10.1149/1.2138675