DOI QR코드

DOI QR Code

Properties of Transparent Conductive IGZO Thin Films Deposited at Various Substrate Temperatures

다양한 기판온도에서 증착된 투명 전도성 IGZO 박막의 특성

  • Kim, Mi-Sun (Department of Electronics Engineering, Catholic University of Daegu) ;
  • Kim, Dong-Young (Department of Electronics Engineering, Catholic University of Daegu) ;
  • Seo, Sung-Bo (Department of Electronics Engineering, Catholic University of Daegu) ;
  • Bae, Kang (Department of Electronics Engineering, Catholic University of Daegu) ;
  • Sohn, Sun-Young (Department of Electronics Engineering, Catholic University of Daegu) ;
  • Kim, Hwa-Min (Department of Electronics Engineering, Catholic University of Daegu)
  • 김미선 (대구가톨릭대학교 전자공학과) ;
  • 김동영 (대구가톨릭대학교 전자공학과) ;
  • 서성보 (대구가톨릭대학교 전자공학과) ;
  • 배강 (대구가톨릭대학교 전자공학과) ;
  • 손선영 (대구가톨릭대학교 전자공학과) ;
  • 김화민 (대구가톨릭대학교 전자공학과)
  • Received : 2010.08.20
  • Accepted : 2010.12.01
  • Published : 2010.12.01

Abstract

In this study, we investigated the optical, electrical, and structural properties of the IGZO($In_2O_3:Ga_2O_3:ZnO$=1:9:90 wt.%) thin films prepared by RF-magnetron sputtering system under various substrate temperatures. All of the IGZO thin films shows an average transmittance of over the 80% in visible range. Most of all, deposited IGZO thin film at $100^{\circ}C$ substrate temperature have ZnO (002) of main growth peak and 17.02 nm of increased grains. And also IGZO thin film have low resistivity($1.35{\times}10^{-3}\;\Omega{\cdot}cm$), high carrier concentration($6.62{\times}10^{20} cm^{-3}$) and mobility($80.1 cm^2$/Vsec). IGZO thin film have 2.08 mV at surface potential of electric force microscopy(EFM). We suggest that pre-annealing at $100^{\circ}C$ can be applied for improving optical, electrical and structural properties.

Keywords

References

  1. J. Han, P. Q. Mantas, and A. M. R. Senos, J. EUR. CERAM. SOC. 21, 1338 (2001).
  2. T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 23, 280 (1984). https://doi.org/10.1143/JJAP.23.L280
  3. P. Nunes, E. Fortunato, P. Tonello, F. Braz Fernandesa, P. Vilarinhob, and R. Martins, Vacuum, 64, 281 (2002). https://doi.org/10.1016/S0042-207X(01)00322-0
  4. S.-U. Oh, E.-W. Kim, T.-Y. Lee, H.-I. Kang, B.-S. Kim, and J.-T. Song, J. KIEEME 20, 776 (2007).
  5. J.-J. Kim and H.-M. Kim, J. Kor. Vac. Soc. 14, 238 (2005).
  6. H. Okano, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakono, Jpn. J. Appl. Phys. 31, 3017 (1992). https://doi.org/10.1143/JJAP.31.3017
  7. P. Wang, N. Chen, Z. Yin, F. Yang, and C. Peng, J. Cryst. Growth. 290, 56 (2006). https://doi.org/10.1016/j.jcrysgro.2006.01.022
  8. R. K. Sahu, R. D. Vispute, S. Dhar, D. C. Kundaliya, and S. S.Manoharan, Thin Solid Films, 517, 1829 (2008). https://doi.org/10.1016/j.tsf.2008.08.188
  9. D.-Y, Kim, H.-M, Kang, and H.-J, Kim, J. Kor. Vac. Soc. 19, 177 (2010). https://doi.org/10.5757/JKVS.2010.19.3.177
  10. C. A Hubber, T. E. Hubber, M. Sadoqi, L. A. Lubin, S. Manalis, and C.B. Prater, Science, 263, 800 (1994). https://doi.org/10.1126/science.263.5148.800