DOI QR코드

DOI QR Code

원자로 물질의 증기폭발에서 고화 입자 크기 분석

Analyses of Size of Solidified Particles in Steam Explosions of Molten Core Material

  • 박익규 (한국원자력연구원 열수력안전연구부) ;
  • 김종환 (한국원자력연구원 열수력안전연구부) ;
  • 민병태 (한국원자력연구원 열수력안전연구부) ;
  • 홍성완 (한국원자력연구원 열수력안전연구부)
  • Park, Ik-Kyu (Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Jong-Hwan (Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Min, Beong-Tae (Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Hong, Seong-Wan (Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute)
  • 투고 : 2009.11.17
  • 심사 : 2010.09.30
  • 발행 : 2010.12.01

초록

고화 입자 크기의 관점에서 TROI 용융물-냉각수 반응 실험의 결과에 대한 물질 효과를 분석하였다. 고화 입자 크기를 분석하면 용융물-냉각수 반응에서 초기 조건, 혼합, 폭발을 기적으로 해석할 수 있다. 증기 폭발이 발생한 경우와 폭발이 발생하지 않는 경우의 고화 입자 크기를 분석한 결과 증기 폭발이 발생한 경우에는 미세 입자가 많고 비교적 큰 입자는 적은 것으로 나타났다. 또한, 혼합 과정에 대한 정보를 보존할 수 있는 증기 폭발이 발생하지 않은 용융물-냉각수 반응을 이용하여 용융물 입자 크기에 대한 물질 효과를 분석하였다. 증기 폭발이 잘 발생하는 용융물은 증기 폭발에 참여할 수 있는 큰 입자를 많이 포함하고 있었고, 증기 폭발이 잘 발생하지 않는 용융물은 증기 폭발보다는 냉각되기 쉬운 작은 입자 혹은 미세 입자를 많이 포함하고 있었다.

The effect of materials on fuel coolant interactions (FCIs) was analyzed on the basis of a solidified particle size response for TROI experiments.$^{(1)}$ The solidified particle size response can provide an understanding of the relationship among the initial condition, the mixing, and an explosion. Through a comparison of the size distributions of the solidified particles in the case of explosive and non-explosive FCIs, it is revealed that an explosive FCI results in the production of a large amount of fine particles and a small amount of large particles. The material effect of the size of solidified particles was analyzed using non-explosive FCIs without losing the information on the mixing. This analysis indicates that an explosive melt includes large particles that participate in the steam explosion, whereas a nonexplosive melt includes smaller particles and finer particles.

키워드

참고문헌

  1. Song, J. H., Park, I. K., Shin, Y. S., Kim, J. H., Hong, S. W., Min, B. T. and Kim, H. D., 2003, “Fuel Coolant Interaction Experiments in TROI using a UO2/ZrO2 Mixture,” Nuclear Engineering and Design, Vol. 222, pp.1-15. https://doi.org/10.1016/S0029-5493(02)00388-6
  2. Corradini, M. L., Kim, B. J. and Oh, M. D., 1988, “Vapor Explosions in Light Water Reactors: A Review of Theory and Modeling,” Progress in Nuclear Energy, Vol. 22, No.1, pp. 1-117. https://doi.org/10.1016/0149-1970(88)90004-2
  3. Matsumura, K. and Nariai, H., 1996, “Self-Triggering Mechanism of Vapor Explosions for a Molten Tin and Water System,” Journal of Nuclear Science and Technology, Vol. 33, No.4, pp. 298-306. https://doi.org/10.3327/jnst.33.298
  4. Mitchell, D. E., Corradini, M. L. and Tarbell, W. W., 1981, Intermediate Scale Steam Explosion Phenomena: Experiments and Analysis, NUREG/CR-2145, SAND81-0124, SNL.
  5. Magallon, D. and Huhtiniemi, I., 2001, “Corium Melt Quenching Tests at Low Pressure and Subcooled Water in FARO,” Nuclear Engineering and Design, Vol. 204, pp. 369-376. https://doi.org/10.1016/S0029-5493(00)00318-6
  6. Huhtiniemi, I. and Magallon, D., 2001, “Insight into Steam Explosions with Corium Melts in KROTOS,” Nuclear Engineering and Design, Vol. 204, pp. 391-400. https://doi.org/10.1016/S0029-5493(00)00319-8
  7. Park, I.K., Kim, J.H., Min, B.T., 2008, “An Evaluation of the Ex-vessel Steam Explosion Load against TROI Experimental Results,” Transactions of the KSME B, Vol. 33, No. 8, pp. 622-628. 2009 https://doi.org/10.3795/KSME-B.2009.33.8.622
  8. Meignen, R. and Magallon, D., 2005, “Comparative Review of FCI Computer Models Used in the OECDSERENA Program,” Proceedings of ICAPP-05, Seoul, Korea, May 15-19.
  9. Basu, S. and Ginsberg, T., 1996, A Reassessment of the Potential for an Alpha-Mode containment Failure and a Review of the Current Understanding of Broader Fuel-Coolant Interaction Issues, Second Steam Explosion Review group Workshop, NUREG- 1524, USNRC.
  10. Song, J. H., Kim, H. D., Hong, S. W., Park, I. K., Shin, Y. S., Min, B. T., Kim, J. H. and Chang, Y. J., 2001, “Steam Explosion Experiments using ZrO2,” Transactions of the KSME B, Vol. 25, No. 12, pp. 1887-1897.
  11. Kim, J.H., Min, B.T., Park, I.K., Kim, H.D. and Hong, S.W., 2008, “Steam explosion experiments using partially oxidized corium,” Journal of Mechanical Science and Technology, Vol. 22, pp.1-9.
  12. Aleksandrov, V. I., Osiko, V. V., Prokhorov, A. M., and Tatarntsev, V. M., 1978, “Synthesis and Crystal Growth of Refractory Materials by RF Melting in a Cold Container, Chapter 6,” Current Topics in Materials Science, Vol. 1, Edited by E. Kaldis, North- Holland Publishing Company .
  13. Kim, J. H., Park, I. K., Min, B. T., Hong, S. W., Song J. H. and Kim, H. D., 2004, “An Effect of Corium Composition Variations on Occurrence of a Spontaneous Steam Explosion in the TROI Experiments,” Proceedings of NUTHOS-6, Nara, Japan, Oct. 4-8.
  14. Baek, W.P., Hong, S.W., 2008, “Overview of the TROI Facility and Roles in the SERENA Projet,” 1st PRG Meeting (Kick-off Meeting) of the OECDSERENA Project, NEA Headquarters, Issy-les- Moulineaux, France, 15-16 January 2008.
  15. Kim, J. H., Park, I. K., Min, B. T., Hong, S. W., Shin, Y. S., Song, J. H. and Kim, H. D., 2004, “The Influence of Variations in the Water Depth and Melt Composition on a Spontaneous Steam Explosion in the TROI Experiments,” Proceedings of ICAPP ’04, Pittsburgh, PA USA, June 13-17.
  16. Kim, J. H., Park, I. K., Min, B. T., Hong, S. W., Hong, S. H., Song J. H. and Kim, H. D., 2006, “Results of the Triggered TROI Steam Explosion Experiments with a Narrow Interaction Vessel,” Proceedings of ICAPP ’06, Reno, NV USA, June 4-8.
  17. Magallon, D., Hohmann, H., 1997, “Experimental Investigation of 150-kg-scael Corium Melt Jet Quenching in Water,” Nuclear Engineering and Design, Vol. 177, pp.321-337. https://doi.org/10.1016/S0029-5493(97)00201-X
  18. Huhtiniemi, I., Magallon, D., Hohmann, H., 1999, “Results of Recent KROTOS FCI Tests: Alumina versus Corium Melts,” Nuclear Engineering and Design, Vol. 189, pp. 379-389. https://doi.org/10.1016/S0029-5493(98)00269-6
  19. Ymanao, N., Maruyama, Y., Kudo, T., Hidaka, A., Sugimoto, J., 1995, “Phenomenological Studies on Melt-coolant Interactions in the ALPHA Program,” Nuclear Engineering and Design, Vol. 155, pp. 369-389. https://doi.org/10.1016/0029-5493(94)00883-Z
  20. Cho, D. H., Armstrong, D. R., Gunther, W. H., 1998, Experiments on Interactions between Zirconium- Containing Melt and Water, NUREG/CR-5372, ANL.
  21. Magallon, D., 2006, “Characteristics of Corium Debris Bed Generated in Large-scale Fuel-coolant Interaction Experiments,” Nuclear Engineering and Design, Vol. 236, pp.1998-2009. https://doi.org/10.1016/j.nucengdes.2006.03.038
  22. Chu, C. C., 1986, One-Dimensional Transient Fluid Model for Fuel-Coolant Interaction Analysis, Ph. D. Thesis, University of Wisconsin-Madison.
  23. Dullforce, T. A., Buchanan, D. J. and Peckover, R. S., 1976, “Self-Triggering of Small-Scale Fuel- Coolant Interactions: I. Experiment, Journal of Physics D: Applied Physics, Vol. 9, pp. 1295-1303. https://doi.org/10.1088/0022-3727/9/9/006
  24. Fletcher, D. F., 1995, “Steam Explosion Triggering: A Review of Theoretical and Experimental Study Investigations,” Nuclear Engineering and Design, Vol. 155, pp. 27-36. https://doi.org/10.1016/0029-5493(94)00865-V
  25. Matsumura, K. and Nariai, H., 1996, “Self- Triggering Mechanism of Vapor Explosions for a Molten Tina and Water System,” Journal of Nuclear Science and Technology, Vol. 33, pp. 298-306. https://doi.org/10.3327/jnst.33.298
  26. Sin, Y. S., Kim, J. H., Hong, S. W., Song, J. H. and Kim, H. D., 2002, “Study on Effect of Air Bubble upon Vapor Explosions with Tin-Water System,” KNS Spring Meeting.