DOI QR코드

DOI QR Code

금속 재료 피로수명 향상을 위한 LSP 유한요소 변수 민감도 해석

Sensitivity Analyses of Finite Element Parameters of Laser Shock Peening for Improving Fatigue Life of Metalic components

  • Kim, Ju-Hee (Dept. of Mechanical Engineering, Korea Univ.) ;
  • Kim, Yun-Jae (Dept. of Mechanical Engineering, Korea Univ.)
  • 투고 : 2010.05.07
  • 심사 : 2010.10.26
  • 발행 : 2010.12.01

초록

레이저 샥 피닝(LSP)은 금속재료 표면처리를 위한 획기적인 기술로서 금속 부품의 피로성능 개선을 위해 최근에 널리 적용되고 있다. 널리 알려진 바와 같이 금속재료의 피로 균열은 재료의 응력 상태가 인장(Tension)하에서만 발생되고, 압축(Compression)상태에서는 발생하지 않는다. 따라서 피로수명 개선을 위해 전통적인 샷 피닝(SP)과 함께 다양한 분야에 응용되고 있으며, 특히 LSP 는 금속재료의 표면과 깊이방향에 대해 높은 압축잔류응력을 생성시켜 준다. 본 논문에서는 유한요소 해석기법을 이용하여 LSP 에 의해 발생되는 압축잔류응력 생성과정을 모사하고, 압축잔류응력에 영향을 미치는 다양한 변수에 대해 민감도 해석을 수행하였다.

Laser shock peening(LSP) is an innovative surface treatment technique, and it has been successfully used to improve the fatigue performance of metallic components. It is widely known, that cracks caused by metal fatigue occur only at the location where the metal is subject to tension, and not at the location where the metal is subjected to compression. Therefore, LSP can be employed to improve fatigue life because it generates a high-magnitude compressive residual stress on the surface and interior of metallic components. In this study, we analyzed the applicability of the LSP method in improving fatigue performance and evaluated the various parameters that influence the compressive residual stress. Further, we analyzed the change in the mechanical properties such as surface dynamic stress and the compressive residual stress on the surface and interior of metallic components.

키워드

참고문헌

  1. Ding, K. and Ye, L., 2006, Laser Shock Peening Performance and Process Simulation, CRC Press, pp. 47-98.
  2. Braisted, W., Brockman, R., 1999, “Finite Element Simulation of Laser Shock Peening,” International Journal of Fatigue, 21, pp. 719-724. https://doi.org/10.1016/S0142-1123(99)00035-3
  3. Ling, X., Peng, W. and Ma, G., 2008, “Influence of Laser Peening Parameters on Residual Stress Field of 304 Stainless Steel,” Journal of Pressure Vessel Technology, Vol. 130, pp. 021201-1-8.
  4. Ding, K. and Ye, L., 2006, “Simulation of Multiple Laser Shock Peening of a 35CD4 Steel Alloy,” Journal of Materials Processing Technology 178, pp. 162-169. https://doi.org/10.1016/j.jmatprotec.2006.03.170
  5. Ballard, P., Fournier, J., Fabbro, R. and Frelat, J., “Residual Stresses Induced by Laser-Shocks,” Journal de Physique IV, C3, 1991, pp. 487-581.
  6. Peyre, P. and Fabbro, R., 1995, “Laser Shock Processing : A Review of the Physics and Applications,” Optical and Quantum Electronics 27, pp. 1213-1229.
  7. Masse,J.-E. and Barreau, G., 1995, “Laser Generation of Stress Waves in Metal,” Surface and Coating Technology 70, pp. 231-234. https://doi.org/10.1016/0257-8972(95)80020-4
  8. Yang, C., Hodgson, P. D., Qianchu and Ye, L., 2008, “Geometrical Effects on Residual Stresses in 7050- T7451 Aluminum Alloy Rods Subject to Laser Shock Peening,” Journal of Material Processing Technology 201, pp. 303-309. https://doi.org/10.1016/j.jmatprotec.2007.11.147
  9. Bang, B., Son, S., Kim, J. and Cho, C., 2009, “Residual Stress Prediction in LSP Surface Treatment by Using FEM,” Trans. Of the KSME, A, pp. 776-772. https://doi.org/10.3795/KSME-A.2009.33.8.767
  10. 2008, ABAQUS Version 6.7, User’s manual, Dassault Systemes,

피인용 문헌

  1. Study on Effect of LSP Process Parameters Using Dimensionless Analysis vol.37, pp.9, 2013, https://doi.org/10.3795/KSME-A.2013.37.9.1141