DOI QR코드

DOI QR Code

Optical and Electrical Properties of $Ti_xSi_{1-x}O_y$ Films

  • Lim, Jung-Wook (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Yun, Sun-Jin (Convergence Components & Materials Research Laboratory, ETRI) ;
  • Kim, Je-Ha (Convergence Components & Materials Research Laboratory, ETRI)
  • Received : 2009.05.19
  • Accepted : 2009.10.09
  • Published : 2009.12.31

Abstract

$Ti_xSi_{1-x}O_y$ (TSO) thin films are fabricated using plasma-enhanced atomic layer deposition. The Ti content in the TSO films is controlled by adjusting the sub-cycle ratio of $TiO_2$ and $SiO_2$. The refractive indices of $SiO_2$ and $TiO_2$ are 1.4 and 2.4, respectively. Hence, tailoring of the refractivity indices from 1.4 to 2.4 is feasible. The controllability of the refractive index and film thickness enables application of an antireflection coating layer to TSO films for use as a thin film solar cell. The TSO coating layer on an Si wafer dramatically reduces reflectivity compared to a bare Si wafer. In the measurement of the current-voltage characteristics, a nonlinear coefficient of 13.6 is obtained in the TSO films.

Keywords

References

  1. O. Auciello et al., "Hybrid Titanium-Aluminum Oxide Layer as Alternative High-k Gate Dielectric for the Next Generation of Complementary Metal-Oxide-Semiconductor Devices," Appl. Phys. Lett., vol. 86, no. 4, Jan. 2005, pp. 042904 1-3.
  2. J.W. Lim, S.J. Yun, and H.T. Kim, "Characteristics of $Al_xTi_xO_y$ Films Grown by Plasma Enhanced Atomic Layer Deposition," J. Electrochemical Society, vol. 154, no. 11, Nov. 2007, pp. G239-G243. https://doi.org/10.1149/1.2776162
  3. S. Ferrari et al., "Chlorine Mobility During Annealing in $N_2$ in $ZrO_2$ and $HfO_2$ Films Grown by Atomic Layer Deposition," J. Appl. Phys., vol. 92, no. 12, Dec. 2002, pp. 7675-7677. https://doi.org/10.1063/1.1521802
  4. M.L. Kuo et al., "Realization of a Near-Perfect Antireflection Coating for Silicon Solar Energy Utilization," Optics Letters, vol. 33, no. 21, Nov. 2008, pp. 2527-2529. https://doi.org/10.1364/OL.33.002527
  5. J.Q. Xi et al., "Optical Thin Film Materials with Low Refractive Index for Broadband Elimination of Fresnel Reflection," Nature Photonics, vol. 1, no. 3, Mar. 2007, pp. 176-179. https://doi.org/10.1038/nphoton.2007.26
  6. T. Fujibayashi, T. Matsui, and M. Kondo, "Improvement in Quantum Efficiency of Thin Film Si Solar Cells Due to the Suppression of Optical Reflectance at Transparent Conducting Oxide/Si Interface by $TiO_{2}/ZnO$ Antireflection Coating," Appl. Phys. Lett., vol. 88, no. 18, May 2006, pp. 183508 1-3.
  7. Y.J. Lee et al., "ZnO Nanostructures as Efficient Antireflection Layers in Solar Cell," Nano Letters, vol. 8, no. 5, May 2008, pp. 1501-1505. https://doi.org/10.1021/nl080659j
  8. M. Barrera et al., "Antireflecting-Passivating Dielectric Films on Crystalline Silicon Solar Cells for Space Applications," Solar Energy Materials & Solar Cells, vol. 92, no. 9, Sept. 2008, pp. 1115-1122. https://doi.org/10.1016/j.solmat.2008.03.021
  9. J.H. Shin et al., "Light Effects on the Bias Stability of Transparent ZnO Thin Film Transistors," ETRI Journal, vol. 31, no. 1, Feb. 2009, pp. 62-64. https://doi.org/10.4218/etrij.09.0208.0266
  10. J. Dupuis et al., "Impact of PECVD SiON Stoichiometry and Post-annealing on the Silicon Surface Passivation," Thin Solid Films, vol. 516, no. 20, Aug. 2008, pp. 6954-6958. https://doi.org/10.1016/j.tsf.2007.12.026
  11. W. Zhou et al., "Microstructured Surface Design for Omnidirectional Antireflection Coatings on Solar Cells," J. Appl. Phys., vol. 102, no. 10, Nov. 2007, pp. 103105 1-9. https://doi.org/10.1063/1.2817470
  12. P.A. Santos et al., "The Sintering Time Influence on the Electrical and Microstructural Characteristics of $SnO_2$ Varistor," Materials Letters, vol. 60, no. 12, June 2006, pp. 1554-1557. https://doi.org/10.1016/j.matlet.2005.11.090
  13. J.W. Lim, S.J. Yun, and J.H. Lee, "Characteristics of Aluminum Silicate Films Grown by Plasma Enhanced Atomic Layer Deposition," Electrochemical and Sold-State Letters, vol. 8, no. 9, Sept. 2005, pp. F25-F28. https://doi.org/10.1149/1.1960041
  14. T. Fujibayashia, T. Matsui, and M. Kondo, "Improvement in Quantum Efficiency of Thin Film Si Solar Cells Due to the Suppression of Optical Reflectance at Transparent Conducting Oxide/Si Interface by $TiO_2$/ZnO Antireflection Coating," Appl. Phys. Lett., vol. 88, no. 18, May 2006, pp. 183508 1-3.
  15. J.W. Lim, S.J. Yun, and H.T. Kim, "Optical $Al_xTi_{1-x}O_y$ Films Grown by Plasma Enhanced Atomic Layer Deposition," Japanese Journal of Applied Physics, vol. 47, no. 8, Aug. 2008, pp. 6934-6937. https://doi.org/10.1143/JJAP.47.6934
  16. J. Ushida et al., "Systematic Design of Antireflection Coating for Semi-infinite One-Dimensional Photonic Crystals Using Bloch Wave Expansion," Appl. Phys. Lett., vol. 82, no. 1, Jan. 2003, pp. 7-9. https://doi.org/10.1063/1.1534936
  17. X. Qi et al., "Greatly Reduced Leakage Current and Conduction Mechanism in Aliovalent-Ion-Doped $BiFeO_3$," Appl. Phys. Lett., vol. 86, no. 6, Feb. 2005, pp. 062903 1-3.

Cited by

  1. Effect of rf-power density on the resistivity of Ga-doped ZnO film deposited by rf-magnetron sputter deposition technique vol.10, pp.3, 2009, https://doi.org/10.1016/j.cap.2010.01.008
  2. Antireflection Properties of Al[sub 2]O[sub 3] and Al[sub x]Ti[sub 1−x]O[sub y] Films on ZnO:Ga Coated Si Wafer for Thin-Film Solar Cell vol.13, pp.2, 2009, https://doi.org/10.1149/1.3269612
  3. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition vol.3, pp.9, 2009, https://doi.org/10.1039/c1nr10349k
  4. Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges vol.29, pp.5, 2011, https://doi.org/10.1116/1.3609974
  5. Amorphous SiGe:H Thin Film Solar Cells with Light Absorbing Layers of Graded Bandgap Profile vol.15, pp.2, 2009, https://doi.org/10.1149/2.020202esl
  6. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends vol.113, pp.2, 2009, https://doi.org/10.1063/1.4757907
  7. Titanium dioxide thin films by atomic layer deposition: a review vol.32, pp.9, 2017, https://doi.org/10.1088/1361-6641/aa78ce
  8. Tunable optical and electrical properties of thermal and plasma-enhanced atomic layer deposited Si-rich SixTi1−xO2 thin films vol.129, pp.5, 2009, https://doi.org/10.1063/5.0028991