Acknowledgement
Grant : Development of the Technology of Side Channel Attack Countermeasure Primitives and Security Validation
Supported by : IITA
References
- P. Barreto et al., “Efficient Pairing Computation on Supersingular Abelian Varieties,” Designs, Codes and Cryptography, vol. 42, no. 3, 2007, pp. 239-271. https://doi.org/10.1007/s10623-006-9033-6
- R. Granger, D. Page, and M. Stam, “Hardware and Software Normal Basis Arithmetic for Pairing-Based Cryptography in Characteristic Three,” IEEE Transactions on Computers, vol. 54, no. 7, 2005, pp. 852-860. https://doi.org/10.1109/TC.2005.120
-
E. Gorla, C. Puttmann, and J. Shokrollahi, “Explicit Formulas for
Efficient Multiplication in
$F_{3^{6m}}$ , ” SAC 2007, LNCS 4876, 2007, pp. 163-183. - D.E. Knuth, Seminumerical Algorithms, Addison-Wesley, 1981.
- F. Hess, N. Smart, and F. Vercauteren, “The Eta Pairing Revisited,” IEEE Transactions on Information Theory, vol. 52, no. 10, 2006, pp. 4595-4602.
- D.H. Choi, D.G. Han, and H.W. Kim, “Construction of Efficient and Secure Pairing Algorithm and Its Application,” Cryptology ePrint Archive, Report 2007/296, 2007.
- S. Kwon, “Efficient Tate Pairing Computation for Supersingular Elliptic Curves over Binary Fields,” Cryptology ePrint Archive, Report 2004/303, 2004.
-
J.-L. Beuchat et al., “Algorithms and Arithmetic Operators for Computing the
$\eta_T$ Pairing in Characteristic Three,” Cryptology ePrint Archive, Report 2007/417, 2007. - P. Burgsser, M. Clausen, and M. Shokrollahi, Algebraic Complexity Theory, Springer-Verlag, 1997.
- PARI/GP, http://pari.math.u-bordeaux.fr/download.html
- D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryptography, Springer, 2004.
- A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997.